首页
社区
课程
招聘
[原创]群论的一些基础知识
发表于: 2011-3-31 08:58 61939

[原创]群论的一些基础知识

2011-3-31 08:58
61939
收藏
免费 7
支持
分享
最新回复 (104)
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
76
同情!不要灰心!觉得英语比代数简单啊,专业英语吗?可不知怎麽安慰好。。。。

现在考研内幕很多,反正要能合导师的心才行---------要把导师当慈禧,学生当太监,女生呢,身体才是本钱
2011-5-7 14:01
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
77
商集商群概念没问题。。。。

你的意思是三种都是商群S3/A3吗?我也样是这想的,所以我问“同时”。。。

就对这S3有这疑问。大群S4,S5,S6.的商群就不这样

因为S3中6个置换1,12,13,23,123,132,

2,3出现从形式上是一样的--可说是可互换---可S3和它的正规子群A3的形成的商群={A3,(12)A3},也可以是{A3,(13)A3},这麽说就有2个(或3个)不同商群了------虽然都同构,你看S3的置换群表,在同一个置换群表却只能={A3,(12)A3},如果是{A3,(13)A3},{A3,(23)A3}就不行,当然在S3的抽象群表中没问题,可置换群表不行,什麽原因?
2011-5-7 14:26
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
78
谢谢你还安慰我两句,今天上午我是万念俱灰,死的心都有了。
我是多么的热爱数学,然而却被那狗屎英语所害。

还是回答问题吧
首先我还是先给你算算,看为什么(12)A3=(23)A3=(13)A3,

A3={(1),(123),(132)}
(12)(1)=(12)    (12)(123)=(23)   (12)(132)=(13)               (12)A3={(12),(23),(13)}
(13)(1)=(13)    (13)(123)=(12)   (13)(132)=(23)               (13)A3={(13),(12),(23)}
(23)(1)=(23)    (23)(123)=(13)   (23)(132)=(12)               (23)A3={(23),(13),(12)}

你也看到了,这三个左陪集是一样的。所以{A3,(12)A3}={A3,(13)A3}={A3,(23)A3}=S3/A3

就对这S3有这疑问。大群S4,S5,S6.的商群就不这样

2,3出现从形式上是一样的--可说是可互换---可S3和它的正规子群A3的形成的商群={A3,(12)A3},也可以是{A3,(13)A3},这麽说就有2个(或3个)不同商群了------虽然都同构,你看S3的置换群表,在同一个置换群表却只能={A3,(12)A3},如果是{A3,(13)A3},{A3,(23)A3}就不行,当然在S3的抽象群表中没问题,可置换群表不行,什麽原因?


这个不是形式一样就可以了,是要经过计算的。你说的“大群S4,S5,S6.的商群就不这样”我不明白什么意思,
是让S4、S5这些模去A4、A5这些吗?

那个置换群表是一定可以的,除非你算错了。应为这三个陪集本来就是一样的,一个可以,那么另外两个也必然可以
2011-5-7 16:22
0
雪    币: 62
活跃值: (27)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
79
其实也没啥关系,学习和研究数学其实与是不是博士没啥关系,专业的英文数学资料的学习其实主要取决于数学基本功,本科的英语足够了。
数学是孤独的学问,希望你继续下去。
2011-5-7 16:45
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
80
万念俱灰这种成语只能出现在小说里。。。。。博士可算是名利场中的名。。。名利场可不是纸上考试( ⊙ o ⊙ )啊!
所以要淡定。。。冷静!

已经没问题了,因为只见书上有S3/A3={A3,(12)A3}
没S3/A3={A3,(13)A3}={A3,(23)A3}=S3/A3所以问的太牛角尖。其实我常装S4抽象群表和26字母的抽象群乘群表------别人装数独,常琢磨陪集,中心,中心化子,正规化子,共扼,置换化子,边缘化子都得用

其实我问的就是个置换群表到抽象群表之间抽象过程

http://d.wanfangdata.com.cn/periodical_gsgsxb201005002.aspx
2011-5-8 15:08
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
81
123456

印度人的群站

http://groupprops.subwiki.org/wiki/Main_Page

http://groupprops.subwiki.org/wiki/Symmetric_group:S3

上传的附件:
2011-5-8 15:10
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
82
群在集合中的作用

你们不明白啊,我不是为了名利。考不上博,就意味着不能再学数学了,我的激情就会慢慢的消失。
数学的研究是不能中断的,等我第二年再考,早已经不是现在的状态了。

不发牢骚了,开始吧

群在集合中的作用是群论中一个强有力的工具,利用它,Sylow给出了第一、第二、第三,三大定理
由于它们总是一起使用,就一起叫Sylow定理

首先我说一下什么叫群在集合上的作用

G是群,X是非空集合,G和X之间有一个运算*,使得对任意的g属于G,x属于X有唯一的一个X中元素y与g*x对应。记作y=g*x,并且满足下面两个:
(1)e*x=x
(2)(g1 g2)*x=g1*(g2*x)
这个运算就叫群在集合上的作用,有时候在不引起误解时省略*
需要注意的是第二条并不是结合律,结合律是在一个集合中说的。

我下面给出几个经典的群作用的例子
1、共轭作用
为了方便,就让群G作用到G本身上,取X=G
定义g*x=[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[gxg^{-1}\][/IMG]
验证一下:
[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[ex=exe^{-1}=x\][/IMG]
[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[(g_{1}g_{2})x=(g_{1}g_{2})x(g_{1}g_{2})^{-1}=g_{1}(g_{2}xg_{2}^{-1})g_{1}^{-1}=g_{1}(g_{2}x)\][/IMG]

再给一个群G在其子集之集(就是G的全部子集所成的集合)上的共轭作用

g*H=[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[gHg^{-1}\][/IMG]

自己验证吧,我就不算了

2、陪集作用
G有正规子群H,从而有商群G/H
G在G/H上的作用g(aH)=gaH
这个作用就是陪集中的运算,显然是作用

下面给几个相当重要的概念:
1轨道
G作用到X上,x属于X,称集合[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[O_{x}=\{gx|g\in%20G\}\][/IMG]是x在G中的轨道

如果X只有一个轨道,那么就称这个作用是传递作用
轨道就像左陪集一样,两个轨道要么完全相同,要么就没有公共元素

2稳定子群
G作用到X上,x属于X,称集合[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[S_{x}=\{g\in%20G|gx=x\}\][/IMG]是x在G中的稳定子群。
对稳定子群确实是G的子群的验证我就不算了,一目了然的

再给个轨道和稳定子群的例子:
G共轭作用到G上
x属于G的轨道:[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[O_{x}=\{gxg^{-1}|g\in%20G\}\][/IMG]
由于共轭作用太经典了,这个轨道有另外一个名字,叫共轭类
x属于G的稳定子群:[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[S_{x}=\{g\in%20G|gxg^{-1}=x\}=\{g\in%20G|gx=xg\}\][/IMG]
x的稳定子群正好就是x的中心化子C(x).
2011-5-9 09:14
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
83
问下什麽是圈积?

圈积后阶怎麽会那麽大?

http://groupprops.subwiki.org/wiki/Center

设G是群,L(G)是G的所有子群的集合。即

L(G)={H|H≤G},

对任意的H1,H2∈L(G),H1∩H2也是G的子群,而<H1∪H2>是由H1∪H2生成的子群(即包含着H1∪H2的最小的子群).在L(G)上定义包含关系,则L(G)关于包含关系构成一个格,称为G的子群格。易见在L(G)中,H1∧H2就是H1∩H2,H1∨H2就是<H1∪H2>.

s4:=Sym(4);
s4;

s4s:=sub<s4 | (1,4)(2,3)> ;
s4s;
s4ss:=sub<s4 | (1,4)(2,3),(1,3)(2,4)> ;
s4ss;

Center (s4);
Center (s4s);
Center (s4ss);

WreathProduct(s4ss,s4s);
Centralizer(s4s, s4ss) ;
Orbits(s4);

Orbits(s4s);
Orbits(s4ss);
Stabilizer(s4,1);
Stabilizer(s4,2);
Stabilizer(s4,3);
Stabilizer(s4,4);
a:=s4!(1,4)(2,3);
a;
set:=GSet(s4);
set;
b:=set!3;
b;
i:=Identity(s4);
i;
c:=a/i;
c;
d:=Action(s4,set);
d;

s4:=Sym(4);
s4;
s4s:=sub<s4 | (1,4)(2,3)> ;
s4s;
s4ss:=sub<s4 | (1,4)(2,3),(1,3)(2,4)> ;
s4ss;
w1:=WreathProduct(s4ss,s4s);
w1;
w2:=WreathProduct(s4s,s4ss);
w2;
pw1:=PrimitiveWreathProduct(s4ss, s4s);
pw1;
pw2:=PrimitiveWreathProduct(s4s, s4ss);
pw2;
Order(w1);
Order(w2);
Order(w1);
Order(pw1);
Order(pw2);
Order(s4);
Order(s4s);
Order(s4ss);

Symmetric group s4 acting on a set of cardinality 4
Order = 24 = 2^3 * 3
Permutation group s4s acting on a set of cardinality 4
    (1, 4)(2, 3)
Permutation group s4ss acting on a set of cardinality 4
    (1, 4)(2, 3)
    (1, 3)(2, 4)
Permutation group w1 acting on a set of cardinality 16
    (1, 13)(2, 14)(3, 15)(4, 16)(5, 9)(6, 10)(7, 11)(8, 12)
    (1, 4)(2, 3)
    (5, 8)(6, 7)
    (1, 3)(2, 4)
    (5, 7)(6, 8)
Permutation group w2 acting on a set of cardinality 16
    (1, 13)(2, 14)(3, 15)(4, 16)(5, 9)(6, 10)(7, 11)(8, 12)
    (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16)
    (1, 4)(2, 3)
Permutation group pw1 acting on a set of cardinality 256
Permutation group pw2 acting on a set of cardinality 256
512
64
512
512
64
24
2
4
2011-5-9 13:16
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
84
圈积是一种群扩张的方法,我给你简单说说
G是一个群,Sn是置换群。设N是G的n次直幂。[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[N=G\times%20G\cdots\times%20G\][/IMG]
取h属于Sn,容易证明映射[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\alpha(h)\][/IMG]是N的自同构:[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\alpha(h)(g_{1},\cdots,g_{n})=(g_{1}h^{-1},\cdots,g_{n}h^{-1})\][/IMG]

还可以证明,[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\alpha\][/IMG]是Sn到Aut(N)的一个自同态。(自己验证吧)
所以可以作N和Sn关于[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\alpha\][/IMG]的半直积,这个半直积叫圈积
2011-5-9 15:20
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
85
直幂是不是直和?圈积好像和半直和有关
2011-5-9 15:24
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
86
我说的直幂就是内直积
2011-5-9 15:38
0
雪    币: 200
活跃值: (10)
能力值: ( LV2,RANK:10 )
在线值:
发帖
回帖
粉丝
87
2011-5-9 16:04
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
88
哪个才是S4到Aut(D)自同态?

s4:=Sym(3);
s4;
D := DirectProduct(s4, s4);
s44:=s4*s4;
s44;
s2:=Sym(2);
s2;
w1:=WreathProduct(D,s2);
w1;
Order(w1);
A:=AutomorphismGroup(D);
A;
hom< s4 -> A | (1, 2, 3) -> ((1, 2,3),(1, 2) -> (1, 2), (4, 5, 6) -> (4, 6, 5),(4, 5) -> (4, 5))>;

Symmetric group s4 acting on a set of cardinality 3
Order = 6 = 2 * 3
{
    (1, 3, 2),
    (2, 3),
    (1, 3),
    (1, 2, 3),
    (1, 2),
    Id(s4)
}
Symmetric group s2 acting on a set of cardinality 2
Order = 2
Permutation group w1 acting on a set of cardinality 12
Order = 2592 = 2^5 * 3^4
    (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)
    (1, 2, 3)
    (1, 2)
    (4, 5, 6)
    (4, 5)
2592
A group of automorphisms of GrpPerm: D, Degree 6, Order 2^2 * 3^2
Generators:
    Automorphism of GrpPerm: D, Degree 6, Order 2^2 * 3^2 which maps:
        (1, 2, 3) |--> (1, 2, 3)
        (1, 2) |--> (1, 2)
        (4, 5, 6) |--> (4, 6, 5)
        (4, 5) |--> (4, 5)
    Automorphism of GrpPerm: D, Degree 6, Order 2^2 * 3^2 which maps:
        (1, 2, 3) |--> (1, 3, 2)
        (1, 2) |--> (1, 2)
        (4, 5, 6) |--> (4, 5, 6)
        (4, 5) |--> (4, 5)
    Automorphism of GrpPerm: D, Degree 6, Order 2^2 * 3^2 which maps:
        (1, 2, 3) |--> (1, 2, 3)
        (1, 2) |--> (2, 3)
        (4, 5, 6) |--> (4, 5, 6)
        (4, 5) |--> (4, 5)
    Automorphism of GrpPerm: D, Degree 6, Order 2^2 * 3^2 which maps:
        (1, 2, 3) |--> (1, 2, 3)
        (1, 2) |--> (1, 2)
        (4, 5, 6) |--> (4, 5, 6)
        (4, 5) |--> (5, 6)
    Automorphism of GrpPerm: D, Degree 6, Order 2^2 * 3^2 which maps:
        (1, 2, 3) |--> (4, 5, 6)
        (1, 2) |--> (4, 5)
        (4, 5, 6) |--> (1, 2, 3)
        (4, 5) |--> (1, 2)

>> hom< s4 -> A | (1, 2, 3) -> ((1, 2,3),(1, 2) -> (1, 2), (4, 5, 6) -> (4, 6,
                  ^
Runtime error in elt< ... >: No permutation group context in which to create
cycle

>> hom< s4 -> A | (1, 2, 3) -> ((1, 3,2),(1, 2) -> (1, 2), (4, 5, 6) -> (4, 6,
                  ^
Runtime error in elt< ... >: No permutation group context in which to create
cycle

>> hom< s4 -> A | (1, 2, 3) -> ((1, 3,2),(1, 2) -> (2, 3), (4, 5, 6) -> (4, 5,
                  ^
Runtime error in elt< ... >: No permutation group context in which to create
cycle

>> hom< s4 -> A | (1, 2, 3) -> ((1, 3,2),(1, 2) -> (2, 3), (4, 5, 6) -> (4, 5,
                  ^
Runtime error in elt< ... >: No permutation group context in which to create
cycle

>> hom< s4 -> A | (1, 2, 3) -> ((4,5,6),(1, 2) -> (4,5), (4, 5, 6) -> (1,2,3),
                  ^
Runtime error in elt< ... >: No permutation group context in which to create
cycle
2011-5-9 17:00
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
89
同态符号立起来是圈积符号,看那印度人网站,群论真是太庞大!


http://groupprops.subwiki.org/wiki/External_wreath_product
2011-5-9 18:10
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
90
Z := IntegerRing(5);
M := RModule(Z, 6);
M;
R:=RSpace(Z, 7);
R;

RM:=RMatrixSpace(Z, 2, 3) ;
RM;
Rank(M) ;
Basis(M);
Rank(RM) ;
Basis(RM);
Zero(M);
Zero(RM);

u:=Random(M);
u;
u1:=Random(RM);
u1;
ElementToSequence(u);
v:=Random(M);
v;
v1:=Random(M);
v1;
u+v;
u+v1;

- u ;
-v1;
u[4];
u[3];
u[2];
u[1];
u[5];
Normalize(u);
Support(u) ;
Weight(u) ;
Normalise(u);
M ! 0 ;
sub<M | [3],[ 0],[ 0 ],[0 ],[0],[ 0]>;
u in M ;

RModule(IntegerRing(5), 6)
Full Vector space of degree 7 over IntegerRing(5)
Full KMatrixSpace of 2 by 3 matrices over IntegerRing(5)
6
[
    M: (1 0 0 0 0 0),
    M: (0 1 0 0 0 0),
    M: (0 0 1 0 0 0),
    M: (0 0 0 1 0 0),
    M: (0 0 0 0 1 0),
    M: (0 0 0 0 0 1)
]
6
[
    [1 0 0]
    [0 0 0],

    [0 1 0]
    [0 0 0],

    [0 0 1]
    [0 0 0],

    [0 0 0]
    [1 0 0],

    [0 0 0]
    [0 1 0],

    [0 0 0]
    [0 0 1]
]
M: (0 0 0 0 0 0)
[0 0 0]
[0 0 0]
M: (4 1 0 1 2 1)
[3 4 0]
[0 3 4]
[ 4, 1, 0, 1, 2, 1 ]
M: (3 2 1 4 3 4)
M: (4 0 3 3 1 3)
M: (2 3 1 0 0 0)
M: (3 1 3 4 3 4)
M: (1 4 0 4 3 4)
M: (1 0 2 2 4 2)
1
0
1
4
2

Normalise(
    g: (4 1 0 1 2 1)
)
In file "/magma/package/Group/GrpMat/CompTree/GrpMat/util/basics.m", line 292,
column 17:
>>     G := Generic(Parent(g));
                   ^
Runtime error in 'Generic': Bad argument types
Argument types given: ModED

{ 1, 2, 4, 5, 6 }
5

Normalise(
    g: (4 1 0 1 2 1)
)
In file "/magma/package/Group/GrpMat/CompTree/GrpMat/util/basics.m", line 292,
column 17:
>>     G := Generic(Parent(g));
                   ^
Runtime error in 'Generic': Bad argument types
Argument types given: ModED

M: (0 0 0 0 0 0)

>> sub<M | [3],[ 0],[ 0 ],[0 ],[0],[ 0]>;
      ^
Runtime error in sub< ... >: Rhs argument 1 is invalid for this constructor

true
2011-5-9 18:51
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
91
问下JacobianMatrix,JacobianIdeal里的Jacobian是不是和数论里那个Jacobi符号的人相同?还是群论的大师JacobSON?

问下y^2-x^3+6的除子群为何是Group of divisors of Curve over Rational Field defined by
$.1^3 - $.2^2*$.3 - 6*$.3^3?

JacobianMatrix,JacobianIdeal

A<x,y> := AffineSpace(Rationals(),2);
A;
C := Curve(A,y^2-x^3-4*x^2-16+x^12-y);
C;
SingularPoints(C);
Qi<i> := QuadraticField(-3);
SingularPoints(C,Qi);
AmbientSpace(C);
BaseRing(C);
CoefficientRing(C);
DefiningPolynomial(C) ;
DefiningIdeal(C) ;
Degree(C);
JacobianIdeal(C);
JacobianMatrix(C);

Genus(C)ï¼?

Affine Space of dimension 2
Variables: x, y
Curve over Rational Field defined by
x^12 - x^3 - 4*x^2 + y^2 - y - 16
{@ @}
{@ @}
Affine Space of dimension 2
Variables: x, y
Rational Field
Rational Field
x^12 - x^3 - 4*x^2 + y^2 - y - 16
Ideal of Polynomial ring of rank 2 over Rational Field
Order: Lexicographical
Variables: x, y
Basis:
[
    x^12 - x^3 - 4*x^2 + y^2 - y - 16
]
12
Ideal of Polynomial ring of rank 2 over Rational Field
Order: Lexicographical
Variables: x, y
Basis:
[
    x^12 - x^3 - 4*x^2 + y^2 - y - 16,
    12*x^11 - 3*x^2 - 8*x,
    2*y - 1
]
Mapping from: Ideal of Polynomial ring of rank 2 over Rational Field to
Polynomial ring of rank 2 over Rational Field
[12*x^11 - 3*x^2 - 8*x               2*y - 1]

5
2011-5-9 19:25
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
92
哪个才是S4到Aut(D)自同态?


我打字打错了,不是自同态,是同态。不好意思

我把这个同态写一下:
[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\alpha:S_{4}\rightarrow%20Aut(N)\][/IMG]
[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\alpha(h)=\alpha_{h}\][/IMG]

雅可比和雅可比森是两个人,雅可比森矩阵、雅可比森理想是雅可比森。雅可比森最大的成就是环论,它与Artin、Noether是齐名的
2011-5-11 08:51
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
93
群在集合中的作用(续)

下面我就用群在集合中的作用这个工具来获得几个结论
1、轨道公式:[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[|G|=|O_{x}||S_{x}|\][/IMG]
我先说明一下符号:[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[G/S_{x}\][/IMG]不是商群的符号,只是代表所有的左陪集的集合。(稳定子群不一定是正规的)
给一个映射[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\varphi:O_{x}\rightarrow%20G/S_{x}\][/IMG]
[IMG]http://chart.apis.google.com/chart?cht=tx&chl=\[\varphi(g_{x})=gS_{x}\][/IMG]
需要注意的是需要验证给出的的确是个映射,因为左陪集代表元不是唯一的,自己验证吧(我前边给出过映射的定义,按照那个验证)

还可以证明这个映射是一个双射,从而如果是有限群的话,那个轨道公式成立
2011-5-11 09:08
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
94
GOOGLE.COM:不是Jacobson是Jacobi ,我以为能学20世纪的数学书了,一搜Jacobi19世纪的,Jacobson的书在这下了本,天书!http://ishare.iask.sina.com.cn/f/14751553.html?retcode=0
还有本格论的------汉语的少啊  收藏!

Jacobi    an
雅可比椭圆函数
雅可比矩阵
雅可比符号
雅可比恒等式
雅可比旋转

1804年10月4日-1851年2月18日)是一位普鲁士数学家,被广泛的认为是历史上最伟大的数学家之一。

Nathan Jacobson

http://www-history.mcs.st-and.ac.uk/history/Biographies/Jacobson.html

Born: 8 Sept 1910 in Warsaw, Russian Empire (now Poland)
Died: 5 Dec 1999 in Hamden, Connecticut, USA
Jacobson Theory of Rings
Jacobson Structure of Rings
Obituary: The New York Times
  
Honours awarded to Nathan Jacobson
(Click below for those honoured in this way)  
AMS Colloquium Lecturer 1955  
LMS Honorary Member 1972  
American Maths Society President 1971 - 1972  
AMS Steele Prize 1998
2011-5-11 11:48
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
95
格这种结构都能构成群吗?格新名词比群还多:,群格,洞,深洞,格归约基

L:=Lattice("A", 4);
L;

LL:=Lattice("Lambda", 3);
LL;
BasisMatrix(L) ;
BasisMatrix(LL) ;
SS:=BaseRing(L);
S:=BaseRing(LL);
S;
CoefficientRing(L);
CoefficientRing(LL);
CoordinateRing(L);

CoordinateRing(LL);
AmbientSpace(L);

CoordinateSpace(L) ;
Category(L) ;
Type(L) ;
AmbientSpace(L);
CoordinateSpace(LL) ;
Category(LL) ;
Type(LL) ;

Dimension(L);
Dimension(LL);
Rank(L);
Rank(LL) ;
Degree(L);
Degree(LL);
Content(L);
Content(LL);
Level(L) ;
Level(LL) ;
Determinant(L) ;
Determinant(L) ;
GramMatrix(L);
GramMatrix(L);
M:=InnerProductMatrix(L) ;
M;
InnerProductMatrix(LL) ;
GramMatrix(M) ;

Basis(L);
Basis(LL);

ChangeRing(L, S);
ChangeRing(LL, SS);

BaseChange(L, S);
BaseChange(LL, SS);

BaseExtend(L, S);
BaseExtend(LL, SS);

v3:=L . 3;
v3;
v33:=LL.5;
v33;

ElementToSequence(v3) ;
ElementToSequence(v33) ;

Minimum(L) ;
Minimum(LL) ;

Holes(L) ;

Holes(L) ;
DeepHoles(L);
DeepHoles(LL);

Genus(L) ;
Genus(LL) ;
SetVerbose("LLL", 3) ;
LLL(L) ;
LLL(LL) ;

AutomorphismGroup(L);

Lattice of rank 4 and degree 5
Determinant: 5
Factored Determinant: 5
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0  0 -1  1  0)
( 0  0  0 -1  1)
Lattice of rank 3 and degree 3
Determinant: 4
Factored Determinant: 2^2
Basis:
(-1 -1  0)
(-1  1  0)
( 0 -1  1)
[-1  1  0  0  0]
[ 0 -1  1  0  0]
[ 0  0 -1  1  0]
[ 0  0  0 -1  1]
[-1 -1  0]
[-1  1  0]
[ 0 -1  1]
Integer Ring
Integer Ring
Integer Ring
Integer Ring
Integer Ring
Full Vector space of degree 5 over Rational Field
Mapping from: Lat: L to Full Vector space of degree 5 over Rational Field given
by a rule [no inverse]
Full Vector space of degree 4 over Rational Field
Inner Product Matrix:
[ 2 -1  0  0]
[-1  2 -1  0]
[ 0 -1  2 -1]
[ 0  0 -1  2]
Mapping from: Lat: L to Full Vector space of degree 4 over Rational Field given
by a rule [no inverse]
Lat
Lat
Full Vector space of degree 5 over Rational Field
Mapping from: Lat: L to Full Vector space of degree 5 over Rational Field given
by a rule [no inverse]
Full Vector space of degree 3 over Rational Field
Inner Product Matrix:
[ 2  0  1]
[ 0  2 -1]
[ 1 -1  2]
Mapping from: Lat: LL to Full Vector space of degree 3 over Rational Field given
by a rule [no inverse]
Lat
Lat
4
3
4
3
5
3
1
1
5
8
5
5
[ 2 -1  0  0]
[-1  2 -1  0]
[ 0 -1  2 -1]
[ 0  0 -1  2]
[ 2 -1  0  0]
[-1  2 -1  0]
[ 0 -1  2 -1]
[ 0  0 -1  2]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[1 0 0]
[0 1 0]
[0 0 1]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[
    (-1  1  0  0  0),
    ( 0 -1  1  0  0),
    ( 0  0 -1  1  0),
    ( 0  0  0 -1  1)
]
[
    (-1 -1  0),
    (-1  1  0),
    ( 0 -1  1)
]
Lattice of rank 4 and degree 5
Determinant: 5
Factored Determinant: 5
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0  0 -1  1  0)
( 0  0  0 -1  1)
Lattice of rank 3 and degree 3
Determinant: 4
Factored Determinant: 2^2
Basis:
(-1 -1  0)
(-1  1  0)
( 0 -1  1)
Lattice of rank 4 and degree 5
Determinant: 5
Factored Determinant: 5
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0  0 -1  1  0)
( 0  0  0 -1  1)
Mapping from: Lat: L to Lat: L
Lattice of rank 3 and degree 3
Determinant: 4
Factored Determinant: 2^2
Basis:
(-1 -1  0)
(-1  1  0)
( 0 -1  1)
Mapping from: Lat: LL to Lat: LL
Lattice of rank 4 and degree 5
Determinant: 5
Factored Determinant: 5
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0  0 -1  1  0)
( 0  0  0 -1  1)
Mapping from: Lat: L to Lat: L
Lattice of rank 3 and degree 3
Determinant: 4
Factored Determinant: 2^2
Basis:
(-1 -1  0)
(-1  1  0)
( 0 -1  1)
Mapping from: Lat: LL to Lat: LL
( 0  0 -1  1  0)

>> v33:=LL.5;
          ^
Runtime error in '.': Argument 2 (5) should be in the range [1 .. 3]

>> v33;
   ^
User error: Identifier 'v33' has not been declared or assigned
[ 0, 0, -1, 1, 0 ]

>> ElementToSequence(v33) ;
                     ^
User error: Identifier 'v33' has not been declared or assigned
2
2
[
    ( 2/5 -3/5  2/5  2/5 -3/5),
    ( 3/5 -2/5  3/5 -2/5 -2/5),
    ( 3/5 -2/5 -2/5  3/5 -2/5),
    ( 1/5 -4/5  1/5  1/5  1/5),
    (-4/5  1/5  1/5  1/5  1/5),
    (-3/5  2/5 -3/5  2/5  2/5),
    ( 2/5 -3/5 -3/5  2/5  2/5),
    ( 3/5  3/5 -2/5 -2/5 -2/5),
    (-2/5  3/5 -2/5 -2/5  3/5),
    (-3/5  2/5  2/5 -3/5  2/5),
    (-2/5  3/5 -2/5  3/5 -2/5),
    (-3/5 -3/5  2/5  2/5  2/5),
    (-2/5  3/5  3/5 -2/5 -2/5),
    (-3/5  2/5  2/5  2/5 -3/5),
    ( 3/5 -2/5 -2/5 -2/5  3/5),
    (-1/5  4/5 -1/5 -1/5 -1/5),
    (-2/5 -2/5  3/5 -2/5  3/5),
    ( 2/5  2/5  2/5 -3/5 -3/5),
    ( 2/5 -3/5  2/5 -3/5  2/5),
    (-2/5 -2/5 -2/5  3/5  3/5),
    ( 2/5  2/5 -3/5  2/5 -3/5),
    (-1/5 -1/5  4/5 -1/5 -1/5),
    (-2/5 -2/5  3/5  3/5 -2/5),
    ( 1/5  1/5 -4/5  1/5  1/5),
    ( 2/5  2/5 -3/5 -3/5  2/5),
    ( 1/5  1/5  1/5  1/5 -4/5),
    (-1/5 -1/5 -1/5  4/5 -1/5),
    ( 1/5  1/5  1/5 -4/5  1/5),
    ( 4/5 -1/5 -1/5 -1/5 -1/5),
    (-1/5 -1/5 -1/5 -1/5  4/5)
]
[
    ( 2/5 -3/5  2/5  2/5 -3/5),
    ( 3/5 -2/5  3/5 -2/5 -2/5),
    ( 3/5 -2/5 -2/5  3/5 -2/5),
    ( 1/5 -4/5  1/5  1/5  1/5),
    (-4/5  1/5  1/5  1/5  1/5),
    (-3/5  2/5 -3/5  2/5  2/5),
    ( 2/5 -3/5 -3/5  2/5  2/5),
    ( 3/5  3/5 -2/5 -2/5 -2/5),
    (-2/5  3/5 -2/5 -2/5  3/5),
    (-3/5  2/5  2/5 -3/5  2/5),
    (-2/5  3/5 -2/5  3/5 -2/5),
    (-3/5 -3/5  2/5  2/5  2/5),
    (-2/5  3/5  3/5 -2/5 -2/5),
    (-3/5  2/5  2/5  2/5 -3/5),
    ( 3/5 -2/5 -2/5 -2/5  3/5),
    (-1/5  4/5 -1/5 -1/5 -1/5),
    (-2/5 -2/5  3/5 -2/5  3/5),
    ( 2/5  2/5  2/5 -3/5 -3/5),
    ( 2/5 -3/5  2/5 -3/5  2/5),
    (-2/5 -2/5 -2/5  3/5  3/5),
    ( 2/5  2/5 -3/5  2/5 -3/5),
    (-1/5 -1/5  4/5 -1/5 -1/5),
    (-2/5 -2/5  3/5  3/5 -2/5),
    ( 1/5  1/5 -4/5  1/5  1/5),
    ( 2/5  2/5 -3/5 -3/5  2/5),
    ( 1/5  1/5  1/5  1/5 -4/5),
    (-1/5 -1/5 -1/5  4/5 -1/5),
    ( 1/5  1/5  1/5 -4/5  1/5),
    ( 4/5 -1/5 -1/5 -1/5 -1/5),
    (-1/5 -1/5 -1/5 -1/5  4/5)
]
[
    ( 2/5 -3/5  2/5  2/5 -3/5),
    ( 3/5 -2/5  3/5 -2/5 -2/5),
    ( 3/5 -2/5 -2/5  3/5 -2/5),
    (-3/5  2/5 -3/5  2/5  2/5),
    ( 2/5 -3/5 -3/5  2/5  2/5),
    ( 3/5  3/5 -2/5 -2/5 -2/5),
    (-2/5  3/5 -2/5 -2/5  3/5),
    (-3/5  2/5  2/5 -3/5  2/5),
    (-2/5  3/5 -2/5  3/5 -2/5),
    (-3/5 -3/5  2/5  2/5  2/5),
    (-2/5  3/5  3/5 -2/5 -2/5),
    (-3/5  2/5  2/5  2/5 -3/5),
    ( 3/5 -2/5 -2/5 -2/5  3/5),
    (-2/5 -2/5  3/5 -2/5  3/5),
    ( 2/5  2/5  2/5 -3/5 -3/5),
    ( 2/5 -3/5  2/5 -3/5  2/5),
    (-2/5 -2/5 -2/5  3/5  3/5),
    ( 2/5  2/5 -3/5  2/5 -3/5),
    (-2/5 -2/5  3/5  3/5 -2/5),
    ( 2/5  2/5 -3/5 -3/5  2/5)
]
[
    ( 0  0 -1),
    (0 1 0),
    ( 0 -1  0),
    (-1  0  0),
    (1 0 0),
    (0 0 1)
]
Genus of Lattice of rank 4 and degree 5
Determinant: 5
Factored Determinant: 5
Minimum: 2
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0  0 -1  1  0)
( 0  0  0 -1  1)
Genus of Lattice of rank 3 and degree 3
Determinant: 4
Factored Determinant: 2^2
Minimum: 2
Basis:
(-1 -1  0)
(-1  1  0)
( 0 -1  1)
Lattice of rank 4 and degree 5Integer Gram Matrix construction; rows: 4,
columns: 5
Time: 0.000
Basis-matrix based variant of L^3 on a (4 x 5) matrix.
-> L^3-parameters: (9.995000E-01, 5.005000E-01)
-> Working precision: 53
-> Using C doubles within orthogonalization.
-> Using genuine Lovasz condition.
2/4. Step: 1 [0/0], Lovasz tests: 0, 0.000, Max Norm: 1.41421
3/4. Step: 2 [1/1], Lovasz tests: 1, 0.000, Max Norm: 1.41421
4/4. Step: 3 [1/1], Lovasz tests: 2, 0.000, Max Norm: 1.41421
Number of loop iterations: 3.
Time: 0.000, Max Basis entry: 1.41421E+00
Total time for LLL: 0.000
Integer Gram Matrix construction; rows: 4, columns: 5
Time: 0.000

Determinant: 5
Factored Determinant: 5
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0 -1  0  1  0)
( 0 -1  0  0  1)

[1 0 0 0]
[0 1 0 0]
[0 1 1 0]
[0 1 1 1]
Lattice of rank 3 and degree 3Integer Gram Matrix construction; rows: 3,
columns: 3
Time: 0.000
Basis-matrix based variant of L^3 on a (3 x 3) matrix.
-> L^3-parameters: (9.995000E-01, 5.005000E-01)
-> Working precision: 53
-> Using C doubles within orthogonalization.
-> Using genuine Lovasz condition.
2/3. Step: 1 [0/0], Lovasz tests: 0, 0.000, Max Norm: 1.41421
3/3. Step: 2 [1/1], Lovasz tests: 1, 0.000, Max Norm: 1.41421
Number of loop iterations: 2.
Time: 0.000, Max Basis entry: 1.41421E+00
Total time for LLL: 0.000
Integer Gram Matrix construction; rows: 3, columns: 3
Time: 0.000

Determinant: 4
Factored Determinant: 2^2
Basis:
(-1 -1  0)
( 0 -1  1)
(-1  0  1)

[1 0 0]
[0 0 1]
[0 1 1]
Gram-matrix based variant of L^3 on a (4 x 4) matrix.
-> L^3-parameters: (9.995000E-01, 5.005000E-01)
-> Working precision: 53
-> Using C doubles within orthogonalization.
-> Using genuine Lovasz condition.
2/4. Step: 1 [0/0], Lovasz tests: 0, 0.000, Max Norm: 1.41421
3/4. Step: 2 [1/1], Lovasz tests: 1, 0.000, Max Norm: 1.41421
4/4. Step: 3 [1/1], Lovasz tests: 2, 0.000, Max Norm: 1.41421
Number of loop iterations: 3.
Time: 0.000, Max Norm: 1.41421
Total time for LLL: 0.000
MatrixGroup(4, Integer Ring) of order 2^4 * 3 * 5
Generators:
    [ 0  0 -1 -1]
    [ 0 -1  0  0]
    [ 0  1  1  0]
    [-1 -1 -1  0]

    [-1  0  0  0]
    [ 1  1  1  0]
    [ 0  0  0  1]
    [ 0  0 -1 -1]

    [ 1  0  0  0]
    [-1 -1  0  0]
    [ 0  0 -1  0]
    [ 0  0  0 -1]
2011-5-11 14:44
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
96
L:=Lattice("A", 4);
L;
LL:=Lattice("Lambda", 3);
LL;

sub<L | > ;
sub<LL | > ;

Lattice of rank 4 and degree 5
Determinant: 5
Factored Determinant: 5
Basis:
(-1  1  0  0  0)
( 0 -1  1  0  0)
( 0  0 -1  1  0)
( 0  0  0 -1  1)
Lattice of rank 3 and degree 3
Determinant: 4
Factored Determinant: 2^2
Basis:
(-1 -1  0)
(-1  1  0)
( 0 -1  1)
Lattice of rank 0 and degree 5
Determinant: 1
Mapping from: Lattice of rank 0 and degree 5 to Lat: L
Lattice of rank 0 and degree 3
Determinant: 1
Mapping from: Lattice of rank 0 and degree 3 to Lat: LL

http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/
http://akpublic.research.att.com/~njas/lattices/index.html
http://akpublic.research.att.com/~njas/lattices/index.html#An
2011-5-11 15:34
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
97
K := QuadraticField(-5);
K;
K1 := QuadraticField(-51);
K1;
K := QuadraticField(-26);
K;
K := QuadraticField(-1136);
K;
K := QuadraticField(-50);
K;
C<i> := ComplexField(5);

Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
Quadratic Field with defining polynomial $.1^2 + 51 over the Rational Field
Quadratic Field with defining polynomial $.1^2 + 26 over the Rational Field
Quadratic Field with defining polynomial $.1^2 + 71 over the Rational Field
Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
12.056 - 4.7278*i
71
4.00000000000000000000000000000
2011-5-12 13:34
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
98
G := Sym({ "a", "b", "c" });
G;
g:=AutomorphismGroup(G);
g;
PermutationGroup(g);
K0:=G!("a","b","c");

K1:=G!("c","b","a");
K2:=G!("c","a","b");
K3:=G!("c","b");
K4:=G!("c","a");
K5:=G!("c","b");
K6:=G!("b","a");
hom< G -> G | K2, K4 >;
hom< G -> G | K2, K6 >;
hom< G -> G | K0->K0, K0->K0 >;

Symmetric group G acting on a set of cardinality 3
Order = 6 = 2 * 3
A group of automorphisms of GrpPerm: G, Degree 3, Order 2 * 3
Generators:
    Automorphism of GrpPerm: G, Degree 3, Order 2 * 3 which maps:
        (c, b, a) |--> (c, a, b)
        (c, b) |--> (c, a)
    Automorphism of GrpPerm: G, Degree 3, Order 2 * 3 which maps:
        (c, b, a) |--> (c, b, a)
        (c, b) |--> (b, a)
Permutation group acting on a set of cardinality 3
Order = 6 = 2 * 3
    (2, 3)
    (1, 2, 3)
Endomorphism of GrpPerm: G, Degree 3, Order 2 * 3 induced by
    (c, b, a) |--> (c, a, b)
    (c, b) |--> (c, a)
Endomorphism of GrpPerm: G, Degree 3, Order 2 * 3 induced by
    (c, b, a) |--> (c, a, b)
    (c, b) |--> (b, a)
Endomorphism of GrpPerm: G, Degree 3, Order 2 * 3 induced by
    (c, a, b) |--> (c, a, b)
    (c, a, b) |--> (c, a, b)

ConjugacyClasses(G);
ClassMap(G);
Exponent(G) ;
NumberOfClasses(G) ;
PowerMap(G) ;
SubgroupLattice(G);

Conjugacy Classes of group G
----------------------------
[1]     Order 1       Length 1      
        Rep Id(G)

[2]     Order 2       Length 3      
        Rep (c, b)

[3]     Order 3       Length 2      
        Rep (c, b, a)

Mapping from: GrpPerm: G to { 1 .. 3 }
6
3
Mapping from: Cartesian Product<{ 1 .. 3 }, Integer Ring> to { 1 .. 3 }

Partially ordered set of subgroup classes
-----------------------------------------

[4]  Order 6  Length 1  Maximal Subgroups: 2 3
---
[3]  Order 3  Length 1  Maximal Subgroups: 1
[2]  Order 2  Length 3  Maximal Subgroups: 1
---
[1]  Order 1  Length 1  Maximal Subgroups:

SimpleSubgroups(G);
SubgroupClasses(G );

Conjugacy classes of subgroups
------------------------------

[1]     Order 1            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 1
[2]     Order 2            Length 3
        Permutation group acting on a set of cardinality 3
        Order = 2
            (b, a)
[3]     Order 3            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 3
            (c, b, a)
[4]     Order 6            Length 1
        Symmetric group G acting on a set of cardinality 3
        Order = 6 = 2 * 3
            (c, b, a)
            (c, b)

G := Sym({ "a", "b", "c" });
G;
A:=AutomorphismGroup(G);
A;
Holomorph(G) ;

PermutationGroup(A);
K0:=G!("a","b","c");

K1:=G!("c","b","a");
K2:=G!("c","a","b");
K3:=G!("c","b");
K4:=G!("c","a");
K5:=G!("c","b");
K6:=G!("b","a");
k24:=hom< G -> G | K2, K4 >;
k24;
k26:=hom< G -> G | K2, K6 >;
k26;
k00:=hom< G -> G | K0->K0, K0->K0 >;
k00;
Kernel(k24);
Kernel(k26);
sub<G | >;
n:=NormalSubgroups(G);
n;
innAutomorphismGroup:=sub<G | ("c", "b", "a")>;
innAutomorphismGroup;
Order(innAutomorphismGroup);
IsSubnormal(G, innAutomorphismGroup);
quo<G |>;

G /  innAutomorphismGroup;

Centre(G);

Symmetric group G acting on a set of cardinality 3
Order = 6 = 2 * 3
A group of automorphisms of GrpPerm: G, Degree 3, Order 2 * 3
Generators:
    Automorphism of GrpPerm: G, Degree 3, Order 2 * 3 which maps:
        (c, b, a) |--> (c, a, b)
        (c, b) |--> (c, a)
    Automorphism of GrpPerm: G, Degree 3, Order 2 * 3 which maps:
        (c, b, a) |--> (c, b, a)
        (c, b) |--> (b, a)
Permutation group acting on a set of cardinality 6
    (1, 2, 3)(4, 5, 6)
    (1, 5)(2, 4)(3, 6)
    (2, 3)(5, 6)
    (4, 6, 5)
Homomorphism of GrpPerm: G, Degree 3, Order 2 * 3 into GrpPerm: $, Degree 6
induced by
    (c, b, a) |--> (1, 2, 3)(4, 5, 6)
    (c, b) |--> (1, 5)(2, 4)(3, 6)
Homomorphism of GrpPerm: $, Degree 6 into A group of automorphisms of GrpPerm:
G, Degree 3, Order 2 * 3 induced by
    (1, 2, 3)(4, 5, 6) |--> Automorphism of GrpPerm: G, Degree 3, Order 2 * 3 of
    order 1
    (1, 5)(2, 4)(3, 6) |--> Automorphism of GrpPerm: G, Degree 3, Order 2 * 3 of
    order 1
    (2, 3)(5, 6) |--> Automorphism of GrpPerm: G, Degree 3, Order 2 * 3
    (4, 6, 5) |--> Automorphism of GrpPerm: G, Degree 3, Order 2 * 3
Permutation group acting on a set of cardinality 3
Order = 6 = 2 * 3
    (2, 3)
    (1, 2, 3)
Endomorphism of GrpPerm: G, Degree 3, Order 2 * 3 induced by
    (c, b, a) |--> (c, a, b)
    (c, b) |--> (c, a)
Endomorphism of GrpPerm: G, Degree 3, Order 2 * 3 induced by
    (c, b, a) |--> (c, a, b)
    (c, b) |--> (b, a)
Endomorphism of GrpPerm: G, Degree 3, Order 2 * 3 induced by
    (c, a, b) |--> (c, a, b)
    (c, a, b) |--> (c, a, b)
Permutation group acting on a set of cardinality 3
Order = 1
Permutation group acting on a set of cardinality 3
Order = 1
Permutation group acting on a set of cardinality 3
Mapping from: GrpPerm: $, Degree 3 to GrpPerm: G
Conjugacy classes of subgroups
------------------------------

[1]     Order 1            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 1
[2]     Order 3            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 3
            (c, b, a)
[3]     Order 6            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 6 = 2 * 3
            (b, a)
            (c, b, a)
Permutation group innAutomorphismGroup acting on a set of cardinality 3
    (c, b, a)
3
true
Permutation group acting on a set of cardinality 3
Order = 6 = 2 * 3
    (1, 2, 3)
    (1, 2)
Mapping from: GrpPerm: G to GrpPerm: $, Degree 3, Order 2 * 3
Composition of Mapping from: GrpPerm: G to GrpPerm: $, Degree 6, Order 2 * 3 and
Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, Degree 3, Order 2
* 3
Permutation group acting on a set of cardinality 2
    Id($)
    (1, 2)
Permutation group acting on a set of cardinality 3
Order = 1
上传的附件:
2011-5-12 13:48
0
雪    币: 110
活跃值: (40)
能力值: ( LV3,RANK:20 )
在线值:
发帖
回帖
粉丝
wzb
99
格是一种序结构,不同于群、环、域、模这些

确实有雅克比深这个人
2011-5-12 17:32
0
雪    币: 1424
活跃值: (122)
能力值: ( LV2,RANK:10 )
在线值:
发帖
回帖
粉丝
100
谢谢!学习了!
2011-5-12 17:57
0
游客
登录 | 注册 方可回帖
返回
// // 统计代码