现在碰到一个软件,是JAVA写的,反编译以后,
发现其解密算法很简单,如下:
public static final BigInteger d = new BigInteger("3");
public static final BigInteger n = new BigInteger("8906903129577952276746908515698640503231635991540376980783671268045406211849974445483080921650302672167490495264490128543118907938111626019977184581076859175345474365729002665435415606416258210992506640138821527940283618012370680028201515994542530228905893145734354457208590016638464983949993650401054435054516895627363958843019152344583195167174687882057052771189508616868586808039000248830107987375404448730214478948741777790686435427083594448761475479158580802447874497702846873");
我看了这个软件的帮助文件
...Factor a Number ?
1) Select the correct number base for the number you want to factor.
2) Type in or Paste the number in the Editbox for the Modulus (N). This enables the 'Factor' button.
3) Press the Factor N button. Note that factoring numbers > 240 Bits can take a LOT of time and memory !
Even smaller ones can take several hours. If you dont believe me try to factor a 240 Bit N generated by
this tool. If the multiple polynomial quadratic sieve (MPQS) Algorithm is needed to factor your number, a huge
amount of memory is needed. Reason for that is the design of the algorithm, not a sloppy implementation ;-)