-
-
[原创]KCTF 2023 第六题 至暗时刻
-
发表于: 2023-9-17 23:28 8053
-
找到程序算法入口
调试运行到这里崩溃了
观察调用栈,发现运行在内存中的一段代码,提取代码
解析输入的代码sub_447
联想调用处的代码,猜测可能有个数独
solve脚本:
11230A2CD3C31CA32E0D707D38E0743531F80F726C1D133B3A914E2F034B1D63BB17F34428E2A31B038C25E0FA2BF2301053752062AA16E20A2FC1971730E90823D01A724B0CA19B0652811541480B80943AE27E13122C30C120
import
numpy as np
def
decode_sudoku(encoded_sudoku_data):
"""
解码数独布局,将其从16进制字符串转换为9x9矩阵。
"""
sudoku_board
=
np.zeros((
9
,
9
), dtype
=
int
)
for
i
in
range
(
0
,
len
(encoded_sudoku_data),
3
):
hex_triplet
=
encoded_sudoku_data[i:i
+
3
]
decimal_value
=
int
(hex_triplet,
16
)
ones_digit, tens_digit, hundreds_digit
=
decimal_value
%
10
, (
decimal_value
/
/
10
)
%
10
, (decimal_value
/
/
100
)
%
10
sudoku_board[tens_digit, ones_digit]
=
hundreds_digit
return
sudoku_board
def
is_valid_move(board, row, col, num):
"""
检查在数独板的特定位置放置一个数字是否有效。
"""
return
not
(num
in
board[row]
or
num
in
board[:, col]
or
num
in
board[row
/
/
3
*
3
:row
/
/
3
*
3
+
3
, col
/
/
3
*
3
:col
/
/
3
*
3
+
3
])
def
solve_sudoku(board):
"""
使用回溯算法解决数独问题。
"""
for
row
in
range
(
9
):
for
col
in
range
(
9
):
if
board[row, col]
=
=
0
:
for
num
in
range
(
1
,
10
):
if
is_valid_move(board, row, col, num):
board[row, col]
=
num
if
solve_sudoku(board):
return
True
board[row, col]
=
0
return
False
return
True
def
convert_solution_to_hex_string(original_board, solved_board):
"""
将解决方案转换为指定的十六进制字符串格式。
"""
hex_string
=
''
for
row
in
range
(
9
):
for
col
in
range
(
9
):
if
original_board[row, col]
=
=
0
:
decimal_number
=
solved_board[row, col]
*
100
+
row
*
10
+
col
hex_number
=
hex
(decimal_number)[
2
:].upper().zfill(
3
)
hex_string
+
=
hex_number
return
hex_string
def
rearrange_hex_string(hex_string_solution, correct_order_str):
"""
使用指定的正确顺序重新排列十六进制字符串解决方案。
"""
correct_order_list
=
[
int
(correct_order_str[i:i
+
2
])
for
i
in
range
(
0
,
len
(correct_order_str),
2
)]
new_array
=
[
None
]
*
256
for
i
in
range
(
0
,
len
(hex_string_solution),
3
):
hex_chunk
=
hex_string_solution[i:i
+
3
]
decimal_value
=
int
(hex_chunk,
16
)
index_value
=
(decimal_value
%
10
)
+
(decimal_value
/
/
10
%
10
)
+
8
*
(decimal_value
/
/
10
%
10
)
new_array[index_value]
=
hex_chunk
final_hex_string_solution
=
''.join(
new_array[i]
for
i
in
correct_order_list
if
new_array[i]
is
not
None
)
return
final_hex_string_solution
# 主程序
encoded_sudoku_data
=
"3201382652D139C0E22132DF1BC2212EA0991650A229B36436823D0B13D51E6"
sudoku_board
=
decode_sudoku(encoded_sudoku_data)
sudoku_board_copy
=
sudoku_board.copy()
is_solvable
=
solve_sudoku(sudoku_board_copy)
hex_string_solution
=
convert_solution_to_hex_string(
sudoku_board, sudoku_board_copy)
correct_order_str
=
"677116575313142309154604431859253431473963507533496829080645035455771774602058076430276921790210013736267644383505517280"
final_hex_string_solution
=
rearrange_hex_string(
hex_string_solution, correct_order_str)
print
(sudoku_board, is_solvable, hex_string_solution, final_hex_string_solution)
import
numpy as np
def
decode_sudoku(encoded_sudoku_data):
"""
解码数独布局,将其从16进制字符串转换为9x9矩阵。
"""
sudoku_board
=
np.zeros((
9
,
9
), dtype
=
int
)
for
i
in
range
(
0
,
len
(encoded_sudoku_data),
3
):
hex_triplet
=
encoded_sudoku_data[i:i
+
3
]
decimal_value
=
int
(hex_triplet,
16
)
ones_digit, tens_digit, hundreds_digit
=
decimal_value
%
10
, (
decimal_value
/
/
10
)
%
10
, (decimal_value
/
/
100
)
%
10
sudoku_board[tens_digit, ones_digit]
=
hundreds_digit
return
sudoku_board
def
is_valid_move(board, row, col, num):
"""
检查在数独板的特定位置放置一个数字是否有效。
"""
return
not
(num
in
board[row]
or
num
in
board[:, col]
or
num
in
board[row
/
/
3
*
3
:row
/
/
3
*
3
+
3
, col
/
/
3
*
3
:col
/
/
3
*
3
+
3
])
def
solve_sudoku(board):
"""
使用回溯算法解决数独问题。
"""
for
row
in
range
(
9
):
for
col
in
range
(
9
):
if
board[row, col]
=
=
0
:
for
num
in
range
(
1
,
10
):
if
is_valid_move(board, row, col, num):
board[row, col]
=
num
if
solve_sudoku(board):
return
True
[招生]科锐逆向工程师培训(2024年11月15日实地,远程教学同时开班, 第51期)
赞赏
他的文章
看原图
赞赏
雪币:
留言: