[原创]密码学中的z3约束求解器
发表于:
2020-10-25 18:52
9958
z3简介:
官方: z3是由微软公司开发的一个优秀的SMT求解器(也就定理证明器),它能够检查逻辑表达式的可满足性。
人话: 解方程
通过下面一道题来展示z3的优势
题目:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import
sympy
import
json
m
=
sympy.randprime(
2
*
*
257
,
2
*
*
258
)
M
=
sympy.randprime(
2
*
*
257
,
2
*
*
258
)
a, b, c
=
[(sympy.randprime(
2
*
*
256
,
2
*
*
257
)
%
m)
for
_
in
range
(
3
)]
x
=
(a
+
b
*
3
)
%
m
y
=
(b
-
c
*
5
)
%
m
z
=
(a
+
c
*
8
)
%
m
flag
=
int
(
open
(
'flag'
,
'rb'
).read().strip().
hex
(),
16
)
p
=
pow
(flag, a, M)
q
=
pow
(flag, b, M)
/
/
类似rsa加密,可以考虑共模攻击
json.dump({ key:
globals
()[key]
for
key
in
"Mmxyzpq"
},
open
(
'crypted'
,
'w'
))
1
2
3
4
5
6
7
8
9
p
=
240670121804208978394996710730839069728700956824706945984819015371493837551238
,
q
=
63385828825643452682833619835670889340533854879683013984056508942989973395315
,
M
=
349579051431173103963525574908108980776346966102045838681986112083541754544269
,
m
=
282832747915637398142431587525135167098126503327259369230840635687863475396299
,
x
=
254732859357467931957861825273244795556693016657393159194417526480484204095858
,
y
=
261877836792399836452074575192123520294695871579540257591169122727176542734080
z
=
213932962252915797768584248464896200082707350140827098890648372492180142394587
,
解题:题目思路比较简单,只需要求得a和b来充当最后类似rsa加密的e1和e2
即可采用共模攻击解的flag
于是先求a,b,c
常规思路:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
m
=
282832747915637398142431587525135167098126503327259369230840635687863475396299
x
=
254732859357467931957861825273244795556693016657393159194417526480484204095858
y
=
261877836792399836452074575192123520294695871579540257591169122727176542734080
z
=
213932962252915797768584248464896200082707350140827098890648372492180142394587
min
=
2
*
*
256
%
m
max
=
2
*
*
257
%
m
if
min
>
max
:
min
,
max
=
max
,
min
for
a
in
range
(
min
,
max
):
for
b
in
range
(
min
,
max
):
for
c
in
range
(
min
,
max
):
if
x
=
=
(a
+
b
*
3
)
%
m
and
y
=
=
(b
-
c
*
5
)
%
m
and
z
=
=
(a
+
c
*
8
)
%
m:
print
(a)
print
(b)
break
算到是应该能算出来,不过时间等不起,所以我们换一种工具
思路2:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from
z3
import
*
import
gmpy2
z
=
213932962252915797768584248464896200082707350140827098890648372492180142394587
m
=
282832747915637398142431587525135167098126503327259369230840635687863475396299
x
=
254732859357467931957861825273244795556693016657393159194417526480484204095858
y
=
261877836792399836452074575192123520294695871579540257591169122727176542734080
a,b,c
=
Ints(
'a b c'
)
s
=
Solver()
min
=
2
*
*
256
%
m
max
=
2
*
*
257
%
m
if
max
<
min
:
max
,
min
=
min
,
max
s.add(x
=
=
(a
+
3
*
b)
%
m )
s.add(y
=
=
(b
-
5
*
c)
%
m )
s.add(z
=
=
(a
+
8
*
c)
%
m )
s.add(
min
< a , a <
max
)
s.add(
min
< b , b <
max
)
if
s.check()
=
=
sat:
A,B
=
s.model()[a].as_long(),s.model()[b].as_long()
print
(A,B)
可以秒解出a和b的值,然后一个简单的共模攻击
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import
gmpy2
from
Crypto.Util.number
import
long_to_bytes
c1
=
240670121804208978394996710730839069728700956824706945984819015371493837551238
c2
=
63385828825643452682833619835670889340533854879683013984056508942989973395315
n
=
349579051431173103963525574908108980776346966102045838681986112083541754544269
e1
=
176268455401080975226023429120782206814426280508931609844850047979724152864469
e2
=
214709966595887251005567190400910974312839914267660095937082916625495667341329
_, r, s
=
gmpy2.gcdext(e1, e2)
m
=
pow
(c1, r, n)
*
pow
(c2, s, n)
%
n
print
long_to_bytes(m)
得到flag
1
FLAG{Math
is
simple, right? OwO}
用法: 下载: 基本语法: 变量初始化变量有以下几种:
相比其他,在密码学里整型比较常用
1
2
a
=
Int
(
'a'
)
b,c,d
=
Ints(
'b c d'
)
创建对象:创建一个解的对象。
为解增加一个限制条件
check(),检查解是否存在,如果存在,会返回"sat"
输出解得结果
1
2
3
if
s.check()
=
=
sat:
result
=
s.modul()
print
(result)
一道题练练手: 题目:GUET-CTF 2019中的BabyRSA
1
2
3
4
5
6
7
8
9
10
11
p
+
q :
0x1232fecb92adead91613e7d9ae5e36fe6bb765317d6ed38ad890b4073539a6231a6620584cea5730b5af83a3e80cf30141282c97be4400e33307573af6b25e2ea
(p
+
1
)(q
+
1
):
0x5248becef1d925d45705a7302700d6a0ffe5877fddf9451a9c1181c4d82365806085fd86fbaab08b6fc66a967b2566d743c626547203b34ea3fdb1bc06dd3bb765fd8b919e3bd2cb15bc175c9498f9d9a0e216c2dde64d81255fa4c05a1ee619fc1fc505285a239e7bc655ec6605d9693078b800ee80931a7a0c84f33c851740
e :
0xe6b1bee47bd63f615c7d0a43c529d219
d:
0x2dde7fbaed477f6d62838d55b0d0964868cf6efb2c282a5f13e6008ce7317a24cb57aec49ef0d738919f47cdcd9677cd52ac2293ec5938aa198f962678b5cd0da344453f521a69b2ac03647cdd8339f4e38cec452d54e60698833d67f9315c02ddaa4c79ebaa902c605d7bda32ce970541b2d9a17d62b52df813b2fb0c5ab1a5
enc_flag:
0x50ae00623211ba6089ddfae21e204ab616f6c9d294e913550af3d66e85d0c0693ed53ed55c46d8cca1d7c2ad44839030df26b70f22a8567171a759b76fe5f07b3c5a6ec89117ed0a36c0950956b9cde880c575737f779143f921d745ac3bb0e379c05d9a3cc6bf0bea8aa91e4d5e752c7eb46b2e023edbc07d24a7c460a34a9a
普通解法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import
gmpy2
from
Crypto.Util.number
import
long_to_bytes
p_add_q
=
0x1232fecb92adead91613e7d9ae5e36fe6bb765317d6ed38ad890b4073539a6231a6620584cea5730b5af83a3e80cf30141282c97be4400e33307573af6b25e2ea
p_add_1_mul_q_add_1
=
0x5248becef1d925d45705a7302700d6a0ffe5877fddf9451a9c1181c4d82365806085fd86fbaab08b6fc66a967b2566d743c626547203b34ea3fdb1bc06dd3bb765fd8b919e3bd2cb15bc175c9498f9d9a0e216c2dde64d81255fa4c05a1ee619fc1fc505285a239e7bc655ec6605d9693078b800ee80931a7a0c84f33c851740
e
=
0xe6b1bee47bd63f615c7d0a43c529d219
d
=
0x2dde7fbaed477f6d62838d55b0d0964868cf6efb2c282a5f13e6008ce7317a24cb57aec49ef0d738919f47cdcd9677cd52ac2293ec5938aa198f962678b5cd0da344453f521a69b2ac03647cdd8339f4e38cec452d54e60698833d67f9315c02ddaa4c79ebaa902c605d7bda32ce970541b2d9a17d62b52df813b2fb0c5ab1a5
c
=
0x50ae00623211ba6089ddfae21e204ab616f6c9d294e913550af3d66e85d0c0693ed53ed55c46d8cca1d7c2ad44839030df26b70f22a8567171a759b76fe5f07b3c5a6ec89117ed0a36c0950956b9cde880c575737f779143f921d745ac3bb0e379c05d9a3cc6bf0bea8aa91e4d5e752c7eb46b2e023edbc07d24a7c460a34a9a
p_mul_q
=
p_add_1_mul_q_add_1
-
p_add_q
-
1
p_sub_q
=
gmpy2.iroot(p_add_q
*
*
2
-
4
*
p_mul_q,
2
)[
0
]
q
=
(p_add_q
+
p_sub_q)
/
/
2
p
=
p_add_q
-
q
assert
(p
+
1
)
*
(q
+
1
)
=
=
p_add_1_mul_q_add_1
n
=
q
*
p
phi
=
(p
-
1
)
*
(q
-
1
)
d
=
gmpy2.invert(e,phi)
m
=
gmpy2.powmod(c,d,n)
print
(long_to_bytes(m))
使用z3:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import
gmpy2
from
Crypto.Util.number
import
long_to_bytes
from
z3
import
*
tmp1
=
0x1232fecb92adead91613e7d9ae5e36fe6bb765317d6ed38ad890b4073539a6231a6620584cea5730b5af83a3e80cf30141282c97be4400e33307573af6b25e2ea
tmp2
=
0x5248becef1d925d45705a7302700d6a0ffe5877fddf9451a9c1181c4d82365806085fd86fbaab08b6fc66a967b2566d743c626547203b34ea3fdb1bc06dd3bb765fd8b919e3bd2cb15bc175c9498f9d9a0e216c2dde64d81255fa4c05a1ee619fc1fc505285a239e7bc655ec6605d9693078b800ee80931a7a0c84f33c851740
e
=
0xe6b1bee47bd63f615c7d0a43c529d219
d
=
0x2dde7fbaed477f6d62838d55b0d0964868cf6efb2c282a5f13e6008ce7317a24cb57aec49ef0d738919f47cdcd9677cd52ac2293ec5938aa198f962678b5cd0da344453f521a69b2ac03647cdd8339f4e38cec452d54e60698833d67f9315c02ddaa4c79ebaa902c605d7bda32ce970541b2d9a17d62b52df813b2fb0c5ab1a5
c
=
0x50ae00623211ba6089ddfae21e204ab616f6c9d294e913550af3d66e85d0c0693ed53ed55c46d8cca1d7c2ad44839030df26b70f22a8567171a759b76fe5f07b3c5a6ec89117ed0a36c0950956b9cde880c575737f779143f921d745ac3bb0e379c05d9a3cc6bf0bea8aa91e4d5e752c7eb46b2e023edbc07d24a7c460a34a9a
s
=
Solver()
p,q
=
Ints(
'p q'
)
s.add(p
+
q
=
=
tmp1)
s.add((p
+
1
)
*
(q
+
1
)
=
=
tmp2)
assert
s.check()
=
=
sat
p
=
s.model()[p].as_long()
q
=
s.model()[q].as_long()
n
=
q
*
p
phi
=
(p
-
1
)
*
(q
-
1
)
d
=
gmpy2.invert(e,phi)
m
=
gmpy2.powmod(c,d,n)
print
(long_to_bytes(m))
其实这道题,z3的优势完全发不出来,不过至少写脚本简单了不少 flag
1
flag{cc7490e
-
78ab
-
11e9
-
b422
-
8ba97e5da1fd
}
[培训]内核驱动高级班,冲击BAT一流互联网大厂工作,每周日13:00-18:00直播授课