-
-
阿里CTF2026-license
-
发表于: 1天前 250
-
阿里CTF2026-license
记录下第一次搞协议逆向,很遗憾比赛过程中卡在最后一步了
总体协议流程如下
- 数据包=长度(4字节)+nonce(12字节)+数据流(长度-12字节)
- 数据流做AES-GCM解密
- zstd解压缩
- base64解码
- protobuf解析出来四个字段,enc_data、password、salt、sha256_hash
- AES-160解密(魔改了SBOX、mixcolumn、加密解密互换了,同时是CBC模式加PKC#7),密钥是password、salt做PBKDF2-HMAC-SHA256得到48字节,前28字节作为密钥,后20字节作为iv
- 解密后是一个json格式字符串,要求包含license_code和sign字段,license_code就是license启动时随机生成的字符串,sign是RSA4096签名(比赛分析到这里了,签名没分析出来,题目应该是给了个d,需要用密码学攻击还原e,但实际上e就是65537)
- 上面全部通过读取和打印FLAG环境变量
ELF加载
直接分析license可以发现他和build_token建立了通信

运行过程中打印了license code: xxxx-uuid这样的字符串,但并没有在license文件里找到,猜测是从build_token发送elf回来加载到主elf内存里执行代码
直接上调试,ida里按照run.sh里设置--no-redirect -c 127.0.0.1:12345,本地跑./build_token -p 'r&FGW9RpqTc*aqof' -s -l 0.0.0.0:12345,从main函数return 0开始调试

刚开始可以看到retn后来到了新的区域

慢慢调试可以发现有一些脱壳的感觉,在解密一些数据代码,按照经验不停的跳过循环,最终可以发现来到一块非常大的函数

单步进入反编译后可以看到license、flag等字符串,说明这里才是真正的check逻辑

数据包结构
开头部分是在生成随机的UUID,慢慢调试直到要求输入,发现下图红框位置要求输入数据,分别要求4、12长度(注意回车符也算输入)

第三处要求输入长度的正是第一处输入的数值-12(不太可控,因为手动输入只能输可打印字符),因此调试到这里时我手动在第三处输入前把要求长度修改掉,从而得以输入可控长度的测试数据,我们这里成为数据流
数据流AES-GCM解密
数据包结构分析完后,下图中sub_403D10函数会返回CPU架构是否支持AVX并设置一个bool字节(随后很多if-else会根据这个值选择进入到的代码,这些分支代码逻辑是相同的,可以省略很多分析过程)。
我的CPU支持AVX,进入到下图红框中的数据初始化,AI分析可知是密钥扩展,但这里的密钥通过一定运算才能得到

所以直接来到最后最终轮密钥结果处,提取出来前32字节即可获得密钥为f6778d8728d8f17ce8c5c81f45c3d5fd869ca851b7575be540776f4f26c1140d
if-else出来后发现对16个0字节做了加密

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | void __fastcall sub_40C1B0(__m128i *_RDI, const __m128i *a2, _OWORD *a3){ _XMM0 = _mm_xor_si128(_mm_loadu_si128(a2), *_RDI); __asm { aesenc xmm0, xmmword ptr [rdi+10h] aesenc xmm0, xmmword ptr [rdi+20h] aesenc xmm0, xmmword ptr [rdi+30h] aesenc xmm0, xmmword ptr [rdi+40h] aesenc xmm0, xmmword ptr [rdi+50h] aesenc xmm0, xmmword ptr [rdi+60h] aesenc xmm0, xmmword ptr [rdi+70h] aesenc xmm0, xmmword ptr [rdi+80h] aesenc xmm0, xmmword ptr [rdi+90h] aesenc xmm0, xmmword ptr [rdi+0A0h] aesenc xmm0, xmmword ptr [rdi+0B0h] aesenc xmm0, xmmword ptr [rdi+0C0h] aesenc xmm0, xmmword ptr [rdi+0D0h] aesenclast xmm0, xmmword ptr [rdi+0E0h] } *a3 = _XMM0;} |
这种模式符合AES-256-GCM模式,里面包含2部分,CTR+GHASH随后的调试里都可以看到特征,比如下图里检查了数据流最后16字节是否等于一组结果

可以写一个代码来加密数据,结果放入数据包中的数据流部分,从而调试通过这部分AES解密
zstd解压缩
解密完的数据发现检查了大小,要求不小于13字节

在往下调试的过程中发现报错Unknown frame descriptor,搜索字符串可以定位一堆报错case
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | const char *__fastcall sub_7FFFF7D68AA6(unsigned __int64 a1){ int v1; // r8d const char *result; // rax v1 = 0; if ( a1 > 0xFFFFFFFFFFFFFF88LL ) v1 = -(int)a1; switch ( v1 ) { case 0: result = "No error detected"; break; case 1: result = "Error (generic)"; break; case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9: case 11: case 13: case 15: case 17: case 18: case 19: case 21: case 23:LABEL_38: result = "Unspecified error code"; break; case 10: result = "Unknown frame descriptor"; break; case 12: result = "Version not supported"; break; case 14: result = "Unsupported frame parameter"; break; case 16: result = "Frame requires too much memory for decoding"; break; case 20: result = "Data corruption detected"; break; case 22: result = "Restored data doesn't match checksum"; break; case 24: result = "Header of Literals' block doesn't respect format specification"; break; default: switch ( v1 ) { case 30: result = "Dictionary is corrupted"; break; case 32: result = "Dictionary mismatch"; break; case 34: result = "Cannot create Dictionary from provided samples"; break; case 40: result = "Unsupported parameter"; break; case 41: result = "Unsupported combination of parameters"; break; case 42: result = "Parameter is out of bound"; break; case 44: result = "tableLog requires too much memory : unsupported"; break; case 46: result = "Unsupported max Symbol Value : too large"; break; case 48: result = "Specified maxSymbolValue is too small"; break; case 49: result = "This mode cannot generate an uncompressed block"; break; case 50: result = "pledged buffer stability condition is not respected"; break; case 60: result = "Operation not authorized at current processing stage"; break; case 62: result = "Context should be init first"; break; case 64: result = "Allocation error : not enough memory"; break; case 66: result = "workSpace buffer is not large enough"; break; case 70: result = "Destination buffer is too small"; break; case 72: result = "Src size is incorrect"; break; case 74: result = "Operation on NULL destination buffer"; break; case 80: result = "Operation made no progress over multiple calls, due to output buffer being full"; break; case 82: result = "Operation made no progress over multiple calls, due to input being empty"; break; case 100: result = "Frame index is too large"; break; case 102: result = "An I/O error occurred when reading/seeking"; break; case 104: result = "Destination buffer is wrong"; break; case 105: result = "Source buffer is wrong"; break; case 106: result = "Block-level external sequence producer returned an error code"; break; case 107: result = "External sequences are not valid"; break; default: goto LABEL_38; } break; } return result;} |
搜索可知是Zstandard解码器报错,解码器在输入数据开头没有识别出合法的魔数(28 B5 2F FD,可以IDA搜索到多个比较),所以才报错

python有zstandard库可以直接帮我们压缩数据,把压缩完的数据传给AES-GCM再去构造数据包即可保证这里解压不在报错
Base64解码
这里非常明显,多处base64查表,而且上一步骤中解压的数据字符不是4的倍数会报错padding不对等等,确认这里在进行base64解码

所以只需要把我们对数据做一次base64编码再去zstd压缩、再去AES-GCM加密,最后构造包即可通过这部分
Protobuf解析
来到下图这里时会出现新的报错,结合AI分析以及代码里switch-case取字段的逻辑,可知是protobuf解析


sub_40B960里要求了wire必须等于2,一共四个字段enc_data、password、salt和sha256_hash
所以这里要构造符合protobuf的数据结构
AES-160解密
发现sha256加密

通过可控数据调试以及上一步骤中字段名,发现password和salt最先被读取并做了PBKDF2-HMAC-SHA256,iter正好是1000,生成了48字节

调试过程中到上图ROR8的位置时发现检查enc_data字段数据长度是否为20的倍数,不是就会跳转LABEL_80(ud2,也就是BUG())
当我修改完enc_data长度为20倍数后,到下图时发现解密完的数据最后检查了最后1字节是否小于20,如果大于20会报错invalid padding

到这里可以分析出是某种对称加密(分组大小为20字节)+PKCS#7填充
回过头分析对称加密算法,下图中调试经过unk_409DC0后会发现off_6EA318指向了一个256字节大小的sbox

值为
1 2 3 4 5 6 7 8 9 10 | AES_SBOX = bytes.fromhex( "637C699066329A0E6441CBA99FFAD5AA6524F777371D83EB981A2A7DBD2502EEE" "5E7455029C4ECA7CCF05C4D1396A2099EFF5AA1C76FE9150C1BC5975614A5B620" "D62111700D7F4E4652354BA4C9011E310F2F17FCDB7430DE481C950653D36718F" "D2D1F7A8D8775B426E071A3825807D4BADAA8B5D99CCFF960D81200798904C2B8" "3C614276DF6CEA495462E8B3F50BF1287ED2CD23F28E80F836E3D722DDF34A2E5" "510C0B15943AC683FBB6DAFCAC638B973AEDCBC9DC3D14CFEA63B92E42B5BFB2C" "F6C1B25D8FEF78915F9472ED4088B7443427E16A0586C8938A7B8451E63D990A3" "3BF39038C086B3E8519CEB08BABA0E247BE4F5E9B57AD6E81163AD0F4") |
和标准AES不一样,但类似AES,搜索发现确实存在20字节分组的算法。调试发现unk_409DC0里面存在表生成的函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | __int64 __fastcall sub_409DC0(volatile signed __int32 *a1, int a2, __int64 a3, __int64 a4){ __int64 result; // rax int v5; // ett int v6; // ecx unsigned int v7; // ebp int v8; // ecx unsigned __int32 v9; // ebp bool v10; // al __int64 v11; // [rsp+86h] [rbp-58h] BYREF __int64 v12; // [rsp+9Eh] [rbp-40h] __int64 v13; // [rsp+A6h] [rbp-38h] v13 = a4; v12 = a3; result = *(unsigned int *)a1; if ( a2 ) { do { while ( 1 ) { v6 = result & 3; if ( (unsigned int)(v6 - 2) < 2 ) break; if ( v6 != 1 ) return result; v7 = result; if ( (result & 4) == 0 ) { v7 = result | 4; result = (unsigned int)_InterlockedCompareExchange(a1, result | 4, 1); if ( (_DWORD)result != 1 ) continue; } v11 = 0LL; while ( *a1 == v7 && ((__int64 (__fastcall *)(__int64, volatile signed __int32 *, __int64, _QWORD, _QWORD, _QWORD, int))unk_4C70D6)( 202LL, a1, 137LL, v7, 0LL, 0LL, -1) < 0 && *(_DWORD *)((__int64 (*)(void))unk_4C4D28)() == 4 ) ; result = *(unsigned int *)a1; } v5 = result; result = (unsigned int)_InterlockedCompareExchange(a1, result & 4 | 1, result); } while ( v5 != (_DWORD)result ); v10 = v6 == 2; } else {LABEL_15: while ( 2 ) { v8 = result & 4; v9 = result; switch ( result & 3 ) { case 0LL: return result; case 1LL: while ( 2 ) { if ( v8 || (v9 |= 4u, result = (unsigned int)_InterlockedCompareExchange(a1, v9, 1), (_DWORD)result == 1) ) { v11 = 0LL; while ( *a1 == v9 && ((__int64 (__fastcall *)(__int64, volatile signed __int32 *, __int64, _QWORD, _QWORD, _QWORD, int))unk_4C70D6)( 202LL, a1, 137LL, v9, 0LL, 0LL, -1) < 0 && *(_DWORD *)((__int64 (*)(void))unk_4C4D28)() == 4 ) ; v9 = *a1; result = *a1 & 3; v8 = *a1 & 4; switch ( *a1 & 3 ) { case 0: return result; case 1: continue; case 2: goto LABEL_23; case 3: goto LABEL_14; } } goto LABEL_15; } case 2LL:LABEL_23: BUG(); case 3LL:LABEL_14: result = (unsigned int)_InterlockedCompareExchange(a1, v8 | 1, v9); if ( v9 != (_DWORD)result ) continue; v10 = 0; break; } break; } } LODWORD(v11) = 0; BYTE4(v11) = v10; (*(void (__fastcall **)(__int64, __int64 *))(v13 + 32))(v12, &v11); result = (unsigned int)_InterlockedExchange(a1, v11); if ( (result & 4) != 0 ) return off_6E9E98(202LL, a1, 129LL, 0x7FFFFFFFLL); return result;}__int64 __fastcall sub_41EBE0(__int64 a1){ __int64 i; // rbp _UNKNOWN **v3; // [rsp+0h] [rbp-148h] BYREF _UNKNOWN ***v4; // [rsp+8h] [rbp-140h] BYREF _OWORD v5[19]; // [rsp+10h] [rbp-138h] BYREF memset(v5, 0, 256); for ( i = 0LL; i != 256; ++i ) { if ( dword_6EA310 ) { v3 = &off_6EA010; v4 = &v3; sub_409DC0(&dword_6EA310, 1, (__int64)&v4, (__int64)&unk_6E95E8); } *((_BYTE *)v5 + i) = __ROL1__(*((_BYTE *)&off_6EA010 + i + 512), 3) ^ __ROL1__(*((_BYTE *)&off_6EA010 + i + 512), 1) ^ __ROL1__(*((_BYTE *)&off_6EA010 + i + 512), 4) ^ *((_BYTE *)&off_6EA010 + i + 512) ^ __ROL1__(*((_BYTE *)&off_6EA010 + i + 512), 2) ^ 0x63; } off_6E9ED8(a1, v5, 256LL); *(_QWORD *)(a1 + 256) = 10LL; *(_QWORD *)(a1 + 264) = 11LL; *(_QWORD *)(a1 + 272) = 12LL; *(_QWORD *)(a1 + 280) = 13LL; *(_QWORD *)(a1 + 288) = 14LL; *(_QWORD *)(a1 + 296) = 11LL; *(_QWORD *)(a1 + 304) = 11LL; *(_QWORD *)(a1 + 312) = 12LL; *(_QWORD *)(a1 + 320) = 13LL; *(_QWORD *)(a1 + 328) = 14LL; *(_QWORD *)(a1 + 336) = 12LL; *(_QWORD *)(a1 + 344) = 12LL; *(_QWORD *)(a1 + 352) = 12LL; *(_QWORD *)(a1 + 360) = 13LL; *(_QWORD *)(a1 + 368) = 14LL; *(_QWORD *)(a1 + 376) = 13LL; *(_QWORD *)(a1 + 384) = 13LL; *(_QWORD *)(a1 + 392) = 13LL; *(_QWORD *)(a1 + 400) = 13LL; *(_QWORD *)(a1 + 408) = 14LL; *(_QWORD *)(a1 + 416) = 14LL; *(_QWORD *)(a1 + 424) = 14LL; *(_QWORD *)(a1 + 432) = 14LL; *(_QWORD *)(a1 + 440) = 14LL; *(_QWORD *)(a1 + 448) = 14LL; *(_DWORD *)(a1 + 456) = 17170948; return a1;}__int64 __fastcall sub_41EE90(_QWORD **a1, __int64 a2){ __int64 v2; // r14 void (__fastcall **v3)(_BYTE *); // rbx char v5; // al __int64 v6; // rcx char v7; // si bool v8; // sf char v9; // al char v10; // si __int64 i; // rax _OWORD v12[15]; // [rsp+0h] [rbp-630h] BYREF __int128 v13; // [rsp+F0h] [rbp-540h] _OWORD v14[15]; // [rsp+100h] [rbp-530h] BYREF __int128 v15; // [rsp+1F0h] [rbp-440h] _OWORD v16[16]; // [rsp+200h] [rbp-430h] BYREF void (__fastcall **v17)(_BYTE *); // [rsp+308h] [rbp-328h] __int64 v18; // [rsp+310h] [rbp-320h] _BYTE v19[784]; // [rsp+320h] [rbp-310h] BYREF v3 = (void (__fastcall **)(_BYTE *))**a1; **a1 = 0LL; if ( !v3 ) BUG(); if ( *(_BYTE *)(a2 + 4) == 1 ) { ((void (*)(void))unk_404120)(); v18 = v2; v17 = v3; v15 = 0LL; memset(v14, 0, sizeof(v14)); memset(v12, 0, sizeof(v12)); v13 = 0LL; v5 = 1; v6 = 0LL; do { *((_BYTE *)v12 + v6) = v5; *((_BYTE *)v14 + (unsigned __int8)v5) = v6++; v7 = 2 * v5; v8 = v5 < 0; v9 = (2 * v5) ^ 0x8D; if ( !v8 ) v9 = v7; v10 = 2 * v9; v8 = v9 < 0; v5 = (2 * v9) ^ 0x8D; if ( !v8 ) v5 = v10; } while ( v6 != 255 ); HIBYTE(v13) = v12[0]; memset(v16, 0, sizeof(v16)); for ( i = 3LL; i != 258; i += 3LL ) { *((_BYTE *)&v15 + i + 14) = *((_BYTE *)v12 + (*((unsigned __int8 *)&v13 + i + 14) ^ 0xFFLL)); *((_BYTE *)&v15 + i + 15) = *((_BYTE *)v12 + (*((unsigned __int8 *)&v13 + i + 15) ^ 0xFFLL)); *((_BYTE *)v16 + i) = *((_BYTE *)v12 + (*((unsigned __int8 *)v14 + i) ^ 0xFFLL)); } ((void (__fastcall *)(_QWORD **, _OWORD *, __int64))unk_4C9CBF)(a1, v14, 256LL); ((void (__fastcall *)(_QWORD **, _OWORD *, __int64))unk_4C9CBF)(a1 + 32, v12, 256LL); ((void (__fastcall *)(_QWORD **, _OWORD *, __int64))unk_4C9CBF)(a1 + 64, v16, 256LL); return (__int64)a1; } else { (*v3)(v19); return off_6E9ED8(v3, v19, 768LL); }} |
交给AI分析可知生成了3张256字节表,用于方便后续AES计算,其中有log、exp、inv表。需要注意的是生成方式和标准不一样,标准xtime异或是0x1b,sub_41EE90里是异或了0x8d

最后出来后又在sub_41EBE0中生成了sbox(这里魔改了)
出来后qword_6EA498值为13,符合AES-160的NK+6(密钥是28字节224bit,NK=7)


此外在一轮轮调试数据还发现到mixcolumn时结果变了,检查发现数值和标准的不一样


到这里应该是全部的魔改点了。调试可以发现AES-160采用的是CBC模式,前面PBKDF2-HMAC-SHA256生成的48字节,前28字节作为密钥,后20字节作为iv。
最后还有一点,前面提到有padding所以应该是解密,但是上面的流程是按照加密算才和调试拿到的数据对应的,所以有可能是加密解密算法对调了下。
解密后会检查sha256加密后的值是否等于protobuf里解析出来的sha256_hash值(32字节)

时间戳校验+RSA签名
前面步骤全部正确后会在最终check前再次进入一个很大的函数,整体AI分析了一遍可知是在做json数据解析,要求包含license_code和sign字段,license_code值等于最开始随机生成的UUID,而sign字段经过一定加密要求最后16字节等于UUID(去除-并转为字节)
通过观察报错定位到第一个是时间戳校验(license expired)

上图中计算了时间戳差值并检查是否小于60s
时间戳校验后有一大串常量数据(1024字节)

继续往下走发现从上面数据中初始化了512字节,之后跳转到一个处理hex的逻辑

其中v204是单一字符,取自v196字符串,查看发现正是我们设置的sign值。下图每次读取两个字符拼接为一字节

之后是一个while循环,逻辑仍然是处理hex值,转为字节存储到了v206

又提取了固定的512字节(来自上面常量)

接着进入到一个函数,传递了sign和512字节,AI分析是大整数取模运算,符合RSA特性

通过调试拿到输入输出值测试发现是在计算
1 2 3 | n = bytes.fromhex("B75815AF28D17CCE2ECA787C6004EC6F1A51AC14B5A7AF746C7B3DD1354517C3CF38B35BE17E64BAB76A47FEA92396DDA947CC268EE0DACC097911912AB64B4C572D7518003C8B24D9DF5E950D44FE9613805ABDC47EA1F693EB6B04D56A124522126770E9FC771B185EC44F308D57FAA6D3C67A585A5E1672F5F89FADB9B073E913166A99D5A3896BDC6430B1C4A5AECDA7FEFA15AEB41A37E76D61698FF36A2F1B2B0A0CBC1AA0AD068C8ECF9388558B0257335EADC4831397917CE1C9B5E2B033C6935F1B57A06BC830B3D03CC8C8D758A38CD8D85583435B3594A7599F1B692B9FBF0E98B388E6A96D20D6245EF5503F79693552987CCAEC2C86D481A45EEA1C573D33FA15109962E5C8D2A02A6923FB375C6B1F05FC4CDCCC17055AADBA17085FC8C22563DA4FFD05FEBD07A485B5B28C3203890FDABDDD6693C40FCECE05D4FEA9EE46F1447416B7FF4D914A6A5787917637977A3330659D8191CD102093F15ED4D2444E60A4950AE51EBF616721F8785F5656130CFABE2174DBB9F9E5121F8F10670EC0538465B283A02C187989E06C07E3BD3792C5E5E7C49752ADCCFA573DF668C90AB67C61CFC5E46D5CC387D51078D27ADBD8E3AE3CDA5C7A00E741B60E8DD1AD61D0F7633FC2E9F30A3BAC74897001B1AEB1B7C27A0C25A75620B8FD1374084F86186C56AF651FBEEE0DFEDA25FC110EFCD8BBB0C05222326BBF")n = int.from_bytes(n, "little")print(hex((1<<4096)%n-1)) |
到这之后基本确认是RSA-4096签名生成的sign,比赛时卡这里是因为n、d端序提取错了,导致RSA签名完的数据一直对不上调试拿到的数据
所以总结来说这里sign经过n、d(私钥)解密后最后16字节要等于uuid,所以我们需要用n、e(公钥)加密uuid作为sign值构造json
总结
到这里就是一步步往回逆向,具体流程如下
- 远程连接获取license_code,构造json数据,包含license_code和sign字段,sign字段由uuid值做rsa加密生成
- 得到的json数据做魔改后的AES-160加密,密钥和iv由后面的password、salt做PBKDF2-HMAC-SHA256加密生成
- AES-160加密完的结果放到enc_data中,password、salt可以我们自己构造,sha256_hash值(hex)要等于json数据sha256加密的结果
- 构造protobuf,四个字段
- 对protobuf字节流Base64编码
- 对Base64字符串做zstd压缩
- 对zstd数据流做AES-GCM加密
- 加密完的结果作为数据流,构造最终的数据包=长度(4字节)+nonce(12字节)+数据流(长度-12字节)
全流程代码如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | import hashlibfrom base64 import b64encodeimport zstandard as zstddef zstd_compress(data): return zstd.compress(data)def xtime(a) -> int: a &= 0xFF return (((a << 1) ^ 0x8D) & 0xFF) if (a & 0x80) else ((a << 1) & 0xFF)def gf_mul(a, b) -> int: a &= 0xFF b &= 0xFF res = 0 for _ in range(8): if b & 1: res ^= a a = xtime(a) b >>= 1 return res & 0xFF# ---------------- S-box / inverse S-box (standard AES S-box) ----------------AES_SBOX = bytes.fromhex( "637C699066329A0E6441CBA99FFAD5AA6524F777371D83EB981A2A7DBD2502EEE" "5E7455029C4ECA7CCF05C4D1396A2099EFF5AA1C76FE9150C1BC5975614A5B620" "D62111700D7F4E4652354BA4C9011E310F2F17FCDB7430DE481C950653D36718F" "D2D1F7A8D8775B426E071A3825807D4BADAA8B5D99CCFF960D81200798904C2B8" "3C614276DF6CEA495462E8B3F50BF1287ED2CD23F28E80F836E3D722DDF34A2E5" "510C0B15943AC683FBB6DAFCAC638B973AEDCBC9DC3D14CFEA63B92E42B5BFB2C" "F6C1B25D8FEF78915F9472ED4088B7443427E16A0586C8938A7B8451E63D990A3" "3BF39038C086B3E8519CEB08BABA0E247BE4F5E9B57AD6E81163AD0F4")INV_SBOX = bytearray(256)for i, v in enumerate(AES_SBOX): INV_SBOX[v] = iINV_SBOX = bytes(INV_SBOX)# ---------------- Rijndael-160 params ----------------def rijndael_rounds(Nb, Nk) -> int: return max(Nb, Nk) + 6 # same as Rijndael# ---------------- Key schedule (uses your xtime/rcon field) ----------------def rot_word(w) -> int: return ((w << 8) & 0xFFFFFFFF) | ((w >> 24) & 0xFF)def sub_word(w, sbox) -> int: return ( (sbox[(w >> 24) & 0xFF] << 24) | (sbox[(w >> 16) & 0xFF] << 16) | (sbox[(w >> 8) & 0xFF] << 8) | (sbox[(w >> 0) & 0xFF] << 0) ) & 0xFFFFFFFFdef rcon(i) -> int: # i starts from 1, stored in MSB byte c = 1 for _ in range(i - 1): c = xtime(c) return (c << 24) & 0xFFFFFFFFdef key_expansion(key, Nb, Nk, sbox): if len(key) != 4 * Nk: raise ValueError(f"key length must be {4*Nk} bytes for Nk={Nk}, got {len(key)}") Nr = rijndael_rounds(Nb, Nk) W_words = Nb * (Nr + 1) w = [0] * W_words # first Nk words (big-endian as in your code) for i in range(Nk): w[i] = int.from_bytes(key[4*i:4*i+4], "big") for i in range(Nk, W_words): temp = w[i - 1] if i % Nk == 0: temp = sub_word(rot_word(temp), sbox) ^ rcon(i // Nk) elif Nk > 6 and (i % Nk) == 4: temp = sub_word(temp, sbox) w[i] = (w[i - Nk] ^ temp) & 0xFFFFFFFF return w# ---------------- State helpers (Nb=5 => 4x5, column-major) ----------------def bytes_to_state(block, Nb): if len(block) != 4 * Nb: raise ValueError("bad block size") s = [[0]*Nb for _ in range(4)] for c in range(Nb): for r in range(4): s[r][c] = block[4*c + r] return sdef state_to_bytes(s, Nb): out = bytearray(4*Nb) for c in range(Nb): for r in range(4): out[4*c + r] = s[r][c] & 0xFF return bytes(out)def add_round_key(s, round_w, round_idx, Nb) -> None: base = round_idx * Nb for c in range(Nb): w = round_w[base + c] s[0][c] ^= (w >> 24) & 0xFF s[1][c] ^= (w >> 16) & 0xFF s[2][c] ^= (w >> 8) & 0xFF s[3][c] ^= (w >> 0) & 0xFFdef sub_bytes(s, sbox, Nb) -> None: for r in range(4): for c in range(Nb): s[r][c] = sbox[s[r][c]]# 你对齐出来的是“右移”版本def shift_rows(s, Nb) -> None: for r in range(1, 4): k = r % Nb row = s[r] s[r] = row[-k:] + row[:-k]def inv_shift_rows(s, Nb) -> None: for r in range(1, 4): k = r % Nb row = s[r] s[r] = row[k:] + row[:k]# ---------------- MixColumns (your matrix) + auto inverse ----------------MIX_MAT = [ [4, 1, 6, 2], [2, 4, 1, 6], [6, 2, 4, 1], [1, 6, 2, 4],]def gf_mat_inv_4x4(mat): # Gauss-Jordan over GF(2^8) with xor add and gf_mul # Build [mat | I] A = [[mat[r][c] & 0xFF for c in range(4)] + [1 if c == r else 0 for c in range(4)] for r in range(4)] def gf_inv(x) -> int: # brute-force inverse in GF(2^8) for this field x &= 0xFF if x == 0: raise ZeroDivisionError("no inverse for 0") for y in range(1, 256): if gf_mul(x, y) == 1: return y raise ZeroDivisionError("no inverse found (should not happen)") for col in range(4): # find pivot pivot = None for r in range(col, 4): if A[r][col] != 0: pivot = r break if pivot is None: raise ValueError("matrix not invertible") if pivot != col: A[col], A[pivot] = A[pivot], A[col] inv_p = gf_inv(A[col][col]) # scale pivot row for j in range(8): A[col][j] = gf_mul(A[col][j], inv_p) # eliminate other rows for r in range(4): if r == col: continue factor = A[r][col] if factor == 0: continue for j in range(8): A[r][j] ^= gf_mul(factor, A[col][j]) inv = [[A[r][4 + c] & 0xFF for c in range(4)] for r in range(4)] return invINV_MIX_MAT = gf_mat_inv_4x4(MIX_MAT)def mix_single_column(col): a0, a1, a2, a3 = [x & 0xFF for x in col] out = [] for r in range(4): out.append( gf_mul(MIX_MAT[r][0], a0) ^ gf_mul(MIX_MAT[r][1], a1) ^ gf_mul(MIX_MAT[r][2], a2) ^ gf_mul(MIX_MAT[r][3], a3) ) return [x & 0xFF for x in out]def inv_mix_single_column(col): a0, a1, a2, a3 = [x & 0xFF for x in col] out = [] for r in range(4): out.append( gf_mul(INV_MIX_MAT[r][0], a0) ^ gf_mul(INV_MIX_MAT[r][1], a1) ^ gf_mul(INV_MIX_MAT[r][2], a2) ^ gf_mul(INV_MIX_MAT[r][3], a3) ) return [x & 0xFF for x in out]def mix_columns(s, Nb) -> None: for c in range(Nb): col = [s[r][c] for r in range(4)] mc = mix_single_column(col) for r in range(4): s[r][c] = mc[r]def inv_mix_columns(s, Nb) -> None: for c in range(Nb): col = [s[r][c] for r in range(4)] mc = inv_mix_single_column(col) for r in range(4): s[r][c] = mc[r]# ---------------- Block encrypt/decrypt (20B) ----------------def rijndael160_encrypt_block(block20, key28, Nb = 5, Nk = 7): Nr = rijndael_rounds(Nb, Nk) w = key_expansion(key28, Nb, Nk, AES_SBOX) s = bytes_to_state(block20, Nb) add_round_key(s, w, 0, Nb) for rnd in range(1, Nr): sub_bytes(s, AES_SBOX, Nb) shift_rows(s, Nb) mix_columns(s, Nb) add_round_key(s, w, rnd, Nb) sub_bytes(s, AES_SBOX, Nb) shift_rows(s, Nb) add_round_key(s, w, Nr, Nb) return state_to_bytes(s, Nb)def rijndael160_decrypt_block(ct20, key28, Nb = 5, Nk = 7): Nr = rijndael_rounds(Nb, Nk) w = key_expansion(key28, Nb, Nk, AES_SBOX) s = bytes_to_state(ct20, Nb) add_round_key(s, w, Nr, Nb) for rnd in range(Nr - 1, 0, -1): inv_shift_rows(s, Nb) sub_bytes(s, INV_SBOX, Nb) add_round_key(s, w, rnd, Nb) inv_mix_columns(s, Nb) inv_shift_rows(s, Nb) sub_bytes(s, INV_SBOX, Nb) add_round_key(s, w, 0, Nb) return state_to_bytes(s, Nb)# ---------------- PKCS#7 padding for 20-byte blocks ----------------BLOCK_SIZE = 20def pkcs7_pad(data, block_size = BLOCK_SIZE): pad_len = block_size - (len(data) % block_size) if pad_len == 0: pad_len = block_size return data + bytes([pad_len]) * pad_lendef pkcs7_unpad(padded, block_size = BLOCK_SIZE): if not padded or (len(padded) % block_size) != 0: raise ValueError("bad padded length") pad_len = padded[-1] if pad_len < 1 or pad_len > block_size: raise ValueError("bad padding") if padded[-pad_len:] != bytes([pad_len]) * pad_len: raise ValueError("bad padding bytes") return padded[:-pad_len]# ---------------- High-level encrypt/decrypt with PBKDF2 key + post-xor mask ----------------def derive_key_and_mask(password_b, salt, ITER): enc_data_48 = hashlib.pbkdf2_hmac("sha256", password_b, salt, ITER, dklen=48) key28 = enc_data_48[:28] mask20 = enc_data_48[28:] return key28, mask20def xor_bytes(a, b): return bytes(x ^ y for x, y in zip(a, b))# ---------------- CBC 模式下的加密/解密逻辑 ----------------def encrypt(data, password_b, salt, ITER): """ CBC 模式加密 (逻辑互换版): 1. PKCS7 Padding 2. 使用 mask20 作为初始 IV 3. 每个块:Plaintext XOR Previous_Ciphertext -> Decrypt_Core -> Ciphertext """ key28, iv = derive_key_and_mask(password_b, salt, ITER) # 自动进行 PKCS7 填充 data_p = pkcs7_pad(data, BLOCK_SIZE) out = bytearray() prev_block = iv # 初始 IV for i in range(0, len(data_p), BLOCK_SIZE): plaintext_block = data_p[i:i + BLOCK_SIZE] # CBC 核心:明文先与前一个密文块异或 mixed = xor_bytes(plaintext_block, prev_block) # 逻辑互换:调用原始的 decrypt 核心作为加密引擎 ciphertext_block = rijndael160_decrypt_block(mixed, key28, Nb=5, Nk=7) out += ciphertext_block prev_block = ciphertext_block # 更新 IV 为当前密文块 return bytes(out)def decrypt(ciphertext, password_b, salt, ITER): """ CBC 模式解密 (逻辑互换版): 1. 使用 mask20 作为初始 IV 2. 每个块:Ciphertext -> Encrypt_Core -> XOR Previous_Ciphertext -> Plaintext 3. 移除 Padding """ if len(ciphertext) % BLOCK_SIZE != 0: raise ValueError("密文长度必须是 20 字节的倍数") key28, iv = derive_key_and_mask(password_b, salt, ITER) out = bytearray() prev_block = iv # 初始 IV for i in range(0, len(ciphertext), BLOCK_SIZE): ciphertext_block = ciphertext[i:i + BLOCK_SIZE] # 逻辑互换:调用原始的 encrypt 核心作为解密引擎 decrypted_core = rijndael160_encrypt_block(ciphertext_block, key28, Nb=5, Nk=7) # CBC 核心:解密后的数据与前一个密文块异或得到明文 plaintext_block = xor_bytes(decrypted_core, prev_block) out += plaintext_block prev_block = ciphertext_block # 更新 IV 为当前密文块(注意是解密前的密文) # 移除 PKCS7 填充 return pkcs7_unpad(bytes(out), BLOCK_SIZE)def encode_varint(x: int) -> bytes: if x < 0: raise ValueError("varint encoder expects non-negative int") out = bytearray() while True: b = x & 0x7F x >>= 7 if x: out.append(b | 0x80) else: out.append(b) break return bytes(out)def encode_key(field_number: int, wire_type: int) -> bytes: return encode_varint((field_number << 3) | wire_type)def field_length_delimited(field_number: int, data) -> bytes: if isinstance(data, str): data = data.encode("utf-8") return encode_key(field_number, 2) + encode_varint(len(data)) + dataMASK128 = (1 << 128) - 1R = 0xE1000000000000000000000000000000 # GCM reduction constant (SP800-38D)# ---------------- AES-ECB 单块 ----------------def aes_ecb_encrypt_block(key: bytes, block16: bytes) -> bytes: if len(block16) != 16: raise ValueError("block16 must be 16 bytes") if len(key) not in (16, 24, 32): raise ValueError("key must be 16/24/32 bytes") from Crypto.Cipher import AES # type: ignore return AES.new(key, AES.MODE_ECB).encrypt(block16)# ---------------- GCM: inc32 ----------------def inc32(counter16: bytes) -> bytes: """只对最后32-bit(big-endian)+1,前12字节不变。""" if len(counter16) != 16: raise ValueError("counter16 must be 16 bytes") prefix = counter16[:12] c = int.from_bytes(counter16[12:], "big") c = (c + 1) & 0xFFFFFFFF return prefix + c.to_bytes(4, "big")# ---------------- GF(2^128) 乘法 (GCM) ----------------def gf128_mul_gcm(x: int, y: int) -> int: """ 标准 GHASH 乘法:按 big-endian bit 顺序。 """ z = 0 v = x for i in range(128): if (y >> (127 - i)) & 1: z ^= v if v & 1: v = (v >> 1) ^ R else: v >>= 1 return z & MASK128def ghash(H: bytes, aad: bytes, c: bytes) -> bytes: """ GHASH_H(A, C),最后包含 len(A)||len(C) (bit) 的长度块。 """ if len(H) != 16: raise ValueError("H must be 16 bytes") H_int = int.from_bytes(H, "big") X = 0 def iter_blocks(data: bytes): for i in range(0, len(data), 16): blk = data[i:i+16] if len(blk) < 16: blk = blk + b"\x00" * (16 - len(blk)) yield blk for blk in iter_blocks(aad): X = gf128_mul_gcm(X ^ int.from_bytes(blk, "big"), H_int) for blk in iter_blocks(c): X = gf128_mul_gcm(X ^ int.from_bytes(blk, "big"), H_int) len_block = (len(aad) * 8).to_bytes(8, "big") + (len(c) * 8).to_bytes(8, "big") X = gf128_mul_gcm(X ^ int.from_bytes(len_block, "big"), H_int) return X.to_bytes(16, "big")# ---------------- GCM: CTR 加密/解密 ----------------def gcm_ctr_crypt(key: bytes, J0: bytes, data: bytes) -> bytes: """ GCM 的加解密(CTR):从 counter=inc32(J0) 开始。 """ if len(J0) != 16: raise ValueError("J0 must be 16 bytes") out = bytearray() counter = inc32(J0) for off in range(0, len(data), 16): block = data[off:off+16] ks = aes_ecb_encrypt_block(key, counter) out.extend(bytes(b ^ k for b, k in zip(block, ks[:len(block)]))) counter = inc32(counter) return bytes(out)# ---------------- GCM: 由 nonce(12) + plaintext 计算 ciphertext 和 tag ----------------def gcm_encrypt_and_tag(key: bytes, nonce12: bytes, plaintext: bytes, aad: bytes = b""): """ 返回 (ciphertext, tag16) - J0 = nonce || 0x00000001 (nonce长度=12时标准写法) - H = AES_K(0^128) - C = CTR(J0, P) - S = AES_K(J0) - tag = S XOR GHASH(H, AAD, C) """ if len(nonce12) != 12: raise ValueError("nonce must be 12 bytes") J0 = nonce12 + b"\x00\x00\x00\x01" H = aes_ecb_encrypt_block(key, b"\x00" * 16) ciphertext = gcm_ctr_crypt(key, J0, plaintext) S = aes_ecb_encrypt_block(key, J0) g = ghash(H, aad, ciphertext) tag = bytes(x ^ y for x, y in zip(S, g)) return ciphertext, tag# ---------------- 拼包:4字节长度 + 12字节nonce + (ciphertext||tag) ----------------def build_packet(nonce12: bytes, ciphertext: bytes, tag16: bytes) -> bytes: if len(nonce12) != 12: raise ValueError("nonce must be 12 bytes") if len(tag16) != 16: raise ValueError("tag must be 16 bytes") body = nonce12 + ciphertext + tag16 length = len(body) # = 12 + len(ciphertext) + 16 return length.to_bytes(4, "little") + bodydef make_packet_from_nonce_plain(key: bytes, nonce12: bytes, plaintext: bytes, aad: bytes = b""): ciphertext, tag16 = gcm_encrypt_and_tag(key, nonce12, plaintext, aad=aad) pkt = build_packet(nonce12, ciphertext, tag16) return pktn = int.from_bytes(bytes.fromhex("BF6B322252C0B0BBD8FC0E11FC25DAFE0DEEBE1F65AF566C18864F087413FDB82056A7250C7AC2B7B1AEB101708974AC3B0AF3E9C23F63F7D061ADD18D0EB641E7007A5CDA3CAEE3D8DB7AD27810D587C35C6DE4C5CF617CB60AC968F63D57FACCAD5297C4E7E5C59237BDE3076CE08979182CA083B2658453C00E67108F1F12E5F9B9DB7421BEFA0C1356565F78F8216761BF1EE50A95A4604E44D2D45EF1932010CD91819D6530337A9737769187576A4A914DFFB7167444F146EEA9FED405CECE0FC49366DDBDDA0F8903328CB2B585A407BDFE05FD4FDA6325C2C85F0817BAAD5A0517CCDC4CFC051F6B5C37FB23692AA0D2C8E562991015FA333D571CEA5EA481D4862CECCA7C98523569793F50F55E24D6206DA9E688B3980EBF9F2B691B9F59A794355B438355D8D88CA358D7C8C83CD0B330C86BA0571B5F93C633B0E2B5C9E17C91971383C4AD5E3357028B558893CF8E8C06ADA01ABC0C0A2B1B2F6AF38F69616DE7371AB4AE15FAFEA7CDAEA5C4B13064DC6B89A3D5996A1613E973B0B9AD9FF8F572165E5A587AC6D3A6FA578D304FC45E181B77FCE97067122245126AD5046BEB93F6A17EC4BD5A801396FE440D955EDFD9248B3C0018752D574C4BB62A91117909CCDAE08E26CC47A9DD9623A9FE476AB7BA647EE15BB338CFC3174535D13D7B6C74AFA7B514AC511A6FEC04607C78CA2ECE7CD128AF1558B7"), "big")d = int.from_bytes(bytes.fromhex("32C892BD6E6CF6B66F83B78BE7F4771C0DC0382A8644B54DEA57BFA20381C63F523D0B0D16397F6D52B380FC5BC9EBED41A0CF434628A131FED3DB548BF2CA41C3B269C4369600E42C0556997E07214F6A721C29A49D3744E9DB04C25709C14CA57E9A39EFA082621F3FB09E09BB45FAD2E8A9F64FDA457A8CE9982899C90EBA69CF0E12FDC572304E81D6D7056F478D3D2B3E9448B9BD27A5F13DEB1D32AF2E944440F58888A46EDC497AD2D91F14E4092C0D4EBF37E8BA220C4D00469377D6AE9E16AAD55C6619D73F65DF364B03A28AF910A0C442FC8871ECF9F8AA4624147F8F3C21BBC5BAF0A5B00A3CE67367AA665D4BDB8036F3289E8EE6192FFDEB8A800A60196CF0C73E75EA5B397057451ADFD512AEE8F1E2C04F959B74270DD7A2F434A3C378C50734570CFFF1880C3D0879A4378AB2E06E2A51C4021205F8CC8D5A24878DB2457984F0BDA467D617CBC92AE65D154C1C4A98740007F4DB588DEBABD1579EA1E5162E3A7B716FB2ABC99274A8E252C2DF32AD674C85219B55213BF4C7621E5E7D583F04F69A68391F1F93FC472425900C9B51DECBDE9B2F742753AF51B9F1C146119D628D379A427D92C8F860D4D662DAFB0E9AF766B0FE580E3325E90F364F8C747095D4A259803139C3937B58EF20E601E8B78B70C2093A4D7335847EF18E6CFD8694BD6928350D66F3809B573C73A00889411C0B97C1204F6986"), "big")e = 65537def gen_packet(license_code): password_b = b"mypassword" salt = bytes.fromhex("1020304050") ITER = 1000 TARGET_HEX = "".join(license_code.split("-")) calculated_sig = pow(int.from_bytes(bytes.fromhex(TARGET_HEX), "big"), e, n) raw_data = b'{"license_code":"'+license_code.encode()+b'","sign":"'+calculated_sig.to_bytes((calculated_sig.bit_length() + 7) // 8, 'big').hex().encode()+b'"}' ct = encrypt(raw_data, password_b, salt, ITER) protobuf_msg = b"".join([ field_length_delimited(1, ct), # enc_data = 20 bytes (派生) field_length_delimited(2, password_b), # password field_length_delimited(3, salt), # salt field_length_delimited(4, hashlib.sha256(raw_data).digest()), # sha256_hash ]) b64 = b64encode(protobuf_msg) buffer = zstd_compress(b64) key = bytes.fromhex("f6778d8728d8f17ce8c5c81f45c3d5fd869ca851b7575be540776f4f26c1140d") nonce12 = b"b" * 12 packet = make_packet_from_nonce_plain(key, nonce12, buffer, aad=b"") return packetif __name__ == "__main__": packet = gen_packet("612e2577-5b06-4bc3-b84b-b3c126b43662") print(int.from_bytes(packet[:4], byteorder="little")) print(packet[16:].hex()) |
远程连接的exp如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | from pwn import *import subprocessfrom solve import *# 设置调试模式context.log_level = 'debug'host = '223.6.249.127'port = 11240io = remote(host, port)# 1. 精确提取挑战指令log.info("正在解析挑战信息...")io.recvuntil(b"plz run this command to get solve result")cmd = ""while True: line = io.recvline().decode().strip() if "hashcash" in line: cmd = line breaklog.info(f"提取到的命令: {cmd}")# 2. 执行并发送结果try: solution = subprocess.check_output(cmd, shell=True).strip() log.success(f"计算结果: {solution.decode()}") io.sendline(solution)except Exception as e: log.error(f"本地执行失败: {e}") io.close() exit()# 3. 等待关键提示并停顿try: io.recvuntil(b"license code:") code = io.recvline().strip() log.success(f"收到 License Code: {code.decode()}") try: payload = gen_packet(code.decode()) log.info(f"正在发送长度为 {len(payload)} 的字节流...") io.send(payload) except ValueError: log.error("输入的不是有效的十六进制字符串!") # --------------------------except EOFError: log.error("服务器在验证后断开连接。")io.interactive() |
拿到远程flag
