首页
社区
课程
招聘
[原创]DASCTF复盘之密码学(2023.07)
发表于: 2024-1-29 19:24 3619

[原创]DASCTF复盘之密码学(2023.07)

2024-1-29 19:24
3619

DASCTF复盘之密码学(2023.07)

DASCTF 2023年7月 密码学题解共3题

快过年了闲下来发现一点存货,遂记录之。

同期题目 DASCTF逆向2023.07

ezRSA

RSA is not easy, huh?

这是两道RSA的缝合题。

第一关:知道P^(Q>>16),要分解N。

第二关:知道前后缀、密文以及带前后缀的密文,求明文。

一开始注意到P的高位字节已知,想用coppersmith求,但发现未知的位数太多,遂放弃。

从第0位一直到第495位每一位的组合只有两种情况,并且可以部分检验(l是部分bit长):

(modl)=PQ(modl)=N(modl)\bar{P}*\bar{Q}\pmod{2^l}=P*Q\pmod{2^l}=N\pmod{2^l}PˉQˉ(mod2l)=PQ(mod2l)=N(mod2l)

直接进行一个深度优先的搜索。

Q的低16位完全未知,只能纯粹枚举。

然后是一个明文相关的板子题,使用多项式求gcd的方式求解,明文的长度需要枚举哈。

注意这里有一点比较坑,n求解之后长度只有1020完全不够,需要加上N,卡了我很久(如果加上2*N长度就超过了)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from sage.all import *
from Crypto.Util.number import *
N = 75000029602085996700582008490482326525611947919932949726582734167668021800854674616074297109962078048435714672088452939300776268788888016125632084529419230038436738761550906906671010312930801751000022200360857089338231002088730471277277319253053479367509575754258003761447489654232217266317081318035524086377
gift = 8006730615575401350470175601463518481685396114003290299131469001242636369747855817476589805833427855228149768949773065563676033514362512835553274555294034
cn = 14183763184495367653522884147951054630177015952745593358354098952173965560488104213517563098676028516541915855754066719475487503348914181674929072472238449853082118064823835322313680705889432313419976738694317594843046001448855575986413338142129464525633835911168202553914150009081557835620953018542067857943
def nextP(Pstr, Qstr):
    l = len(Pstr)
    if l == 512:
        P = int(Pstr, 2)
        Q = int(Qstr, 2)
        if P * Q == N:
            print(f"P={P}\nQ={Q}")
    elif l == 0:
        assert(len(Qstr) == 16)
        Qbar = int(Qstr, 2)
        b = (gift >> l) & 1
        if b == 0: # Pbar[l] == Qbar[16+l]
            nextP('1', '1' + Qstr)
            nextP('0', '0' + Qstr)
        else: # Pbar[l] == ~Qbar[16+l]
            nextP('1', '0' + Qstr)
            nextP('0', '1' + Qstr)
    else:
        Pbar = int(Pstr, 2) # Pbar = P % (2**l)
        Qbar = int(Qstr, 2) # Qbar = Q % (2**(l+16))
        if (Pbar * Qbar) % (2**l) == N % (2**l):
            b = (gift >> l) & 1
            if b == 0:
                nextP('1' + Pstr, '1' + Qstr)
                nextP('0' + Pstr, '0' + Qstr)
            else:
                nextP('1' + Pstr, '0' + Qstr)
                nextP('0' + Pstr, '1' + Qstr)
for Qlow in range(1<<16, 1<<17):
    Qbar = bin(Qlow)[3:] # 0b1????????????????
     nextP('', Qbar)
 
e = 11
P = 8006847171912577069085166877758626954304824756138758266557706391662987806065132448544117840031499707938227955094109779732609035310252723066470330862622641
Q = 9366986529377069783394625848920106951220134111548343265311677163992169555436421569730703291128771472885865288798344038000984911921843088200997725324682297
Phi = (P - 1) * (Q - 1)
D = int(inverse_mod(e, Phi))
n = pow(cn, D, N)
#print(len(bin(n)[2:]))
# 1020 < 1022, not qualified, have to add N
# n + 2*N will produce len=1024
n += N
#print(f'n={n}')
 
###################
 
prefix = b"dasctf{"
suffix = b"}"
n = 83410392685813224685786027640778560521035854332627839979281105731457044069408118952629284089869335506983096270269822559619624906180108256504440296527471536363057103101146262613593336072556587341466840510200003498265457285439149541137127199088938421905041387224795918868443175561632999479925818053898100117419
e = 11
c1 = 69307306970629523181683439240748426263979206546157895088924929426911355406769672385984829784804673821643976780928024209092360092670457978154309402591145689825571209515868435608753923870043647892816574684663993415796465074027369407799009929334083395577490711236614662941070610575313972839165233651342137645009
c2 = 46997465834324781573963709865566777091686340553483507705539161842460528999282057880362259416654012854237739527277448599755805614622531827257136959664035098209206110290879482726083191005164961200125296999449598766201435057091624225218351537278712880859703730566080874333989361396420522357001928540408351500991
 
###################
 
def rsa_cpa(c1, c2, m0, e, n):
    x = PolynomialRing(Zmod(n), 'x').gen()
    shift = 8*len(suffix)
    g1 = x**e - c1
    g2 = (x*2**shift+m0)**e - c2
    while g2:
        g1, g2 = g2, g1 % g2
    f = g1.monic()
    return int(-f[0])
 
###################
 
# bruteforce message lenth
for msglen in range(10, 50):
    m0 = bytes_to_long(prefix + b'\x00' * msglen + suffix)
    m = rsa_cpa(c1, c2, m0, e, n)
    try:
        flag = long_to_bytes(m).decode()
        assert msglen == len(flag)
        print(prefix.decode() + flag + suffix.decode())
    except:
        continue
 
# dasctf{C0pper_Sm1th_Mak3s_T1ng5_Bet4er}

dasctf{C0pper_Sm1th_Mak3s_T1ng5_Bet4er}

ezDHKE

DHKE is easy, huh?

Diffie Hellman密钥交换的模数任选,令 p=gkp = g^k - 1p=gk1,有
gxgxmodk(modp)g^x \equiv g^{x \bmod k} \pmod pgxgxmodk(modp)

所以

=gxmodk=x\log_gC_x = \log_gg^{x \bmod k} = xloggCx=logggxmodk=x

=gymodk=y\log_gC_y = \log_gg^{y \bmod k} = yloggCy=logggymodk=y

(k取的比较大)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from Crypto.Util.number import *
from Crypto.Cipher import AES
from hashlib import sha256
from random import randbytes, getrandbits
#P = 0
#for i in range(1024, 2048, 1):
#    P = 2 ** i - 1
#    if (isPrime(P)):
#        print(f'P = 2 ** {i} = {P}')
#
#Cx = int(input('Cx = '))
#Cy = int(input('Cy = '))
P = 10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087
Cx = 2630067950774186753620494941440064332775169901411586929749140451534366077148540411056833268138794225613491484428089108856509716125091901931563907385325940424977611835564222299095831878942161358635646625867890688
Cy = 18014398509481984
x0 = len(bin(Cx)) - 3
y0 = len(bin(Cy)) - 3
key = sha256(long_to_bytes(pow(2, x0 * y0, P))).digest()
iv = b"dasctfdasctfdasc"
aes = AES.new(key, AES.MODE_CBC, iv)
enc = b'\x9d\n\x8f\xb1\xb3YO\x94;1\xb1r\xa0f\x015K>\xb4\xe0t\x04\xdd\xb9\x12\x9a[I\xc6\xd1\xdc\xb4\xbbj1\x1b\xde\xcd\xc2\x18\xd408CCM\xa5\xcc'
flag = aes.decrypt(enc)
print(flag)

DASCTF{eefa6be7-57e6-4a48-99d6-936feff93108}

ezAlgebra

Algebra is not easy!

算法如下:

取3个质数pqr,p长512bit,q长256bit,r长256bit,乘积为n,n给定。

随机摇一个32bit的t,输出密文:

=+(p+t)+(p+t)+(p+t)+(p+t)(modn)c_1 = 1997 + (p+t) + (p+t)^2 + (p+t)^3 + (p+t)^4 \pmod nc1=1997+(p+t)+(p+t)2+(p+t)3+(p+t)4(modn)

=+(mt)+(mt)+...+(mt)(modq)c_2 = 1997 + (mt) + (mt)^2 + ... + (mt)^{19} \pmod qc2=1997+(mt)+(mt)2+...+(mt)19(modq)

=+(m+t)+(m+t)+...+(m+t)(modq)c_3 = 1997 + (m+t) + (m+t)^2 + ... + (m+t)^{19} \pmod qc3=1997+(m+t)+(m+t)2+...+(m+t)19(modq)

注意到
f(t)=+t+t+t+tc=(modp)f(t) = 1997 + t + t^2 + t^3 + t^4 - c1 = 0 \pmod pf(t)=1997+t+t2+t3+t4c1=0(modp)

可以求小根,根据coppersmith方法有

<=nϵ,ϵ=<=β,p>=nβt_0<=\frac{1}{2} n^{\frac{\beta^2}{\delta}-\epsilon},\epsilon=\frac{\beta}{\gamma}<=\frac{1}{7}\beta,p>=n^\betat0<=21nδβ2ϵ,ϵ=γβ<=71β,p>=nβ

δ\deltaδ是次数,取4。
β\betaβ就是p的估计,p512bit,取0.5。

t有32bit,n有1024bit,大约解得γ>=\gamma>=16.5γ>=16.5,取17。

得到t后,带入f(t)的公式和n作gcd,得到p,将n缩为qr的乘积。

(m)=+(mt)+(mt)+...+(mt)cg_1(m)=1997+(mt)+(mt)^2+...+(mt)^{19}-c2g1(m)=1997+(mt)+(mt)2+...+(mt)19c2

(m)=+(m+t)+(m+t)+...+(m+t)cg_2(m)=1997+(m+t)+(m+t)^2+...+(m+t)^{19}-c3g2(m)=1997+(m+t)+(m+t)2+...+(m+t)19c3

现在,在Z/nZ[x]\Z/n\Z[x]Z/nZ[x]寻找g1和g2的线性组合,使得其次数尽可能小。

(m)=(m)(m)\bar{g_1}(m)=g_1(m)-g_2(m)g1ˉ(m)=g1(m)g2(m)

(m)=(m)m(m)\bar{g_2}(m)=g_2(m)-m\bar{g_1}(m)g2ˉ(m)=g2(m)mg1ˉ(m)

如果g1,g2同次数且都是首一多项式,进行该过程后次数均递减。

不断地进行这个过程,最后要么出现g1为常数且是q的倍数,
要么在化归首一的时候出现无逆元的最高次系数。(因为g1,g2都是q的倍式)

无论哪种情况,将其和n作gcd得到q和r。

有了q之后,在Z/pZ[x]\Z/p\Z[x]Z/pZ[x]上求g2和g3的gcd,此时一定可以找到一次式m+m+m_0m+m0

然后,令m=+iqm=-m_0+iqm=m0+iq爆破明文,当i取到24bit的时候得到了flag。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from sage.all import *
from Crypto.Util.number import *
 
n = 119156144845956004769507478085325079414190248780654060840257869477965140304727088685316579445017214576182010373548273474121727778923582544853293534996805340795355149795694121455249972628980952137874014208209750135683003125079012121116063371902985706907482988687895813788980275896804461285403779036508897592103
c1 = 185012145382155564763088060801282407144264652101028110644849089283749320447842262397065972319766119386744305208284231153853897076876529326779092899879401876069911627013491974285327376378421323298147156687497709488102574369005495618201253946225697404932436143348932178069698091761601958275626264379615139864425
c2 = 722022978284031841958768129010024257235769706227005483829360633993196299360813
c3 = 999691052172645326792013409327337026208773437618455136594949462410165608463231
 
# step1: get t, p
t = Zmod(n)['t'].gen()
f1 = 1997 + t + t**2 + t**3 + t**4 - c1 # % p (p>=n**beta)
t0 = f1.small_roots(beta=0.5, epsilon=0.5/17)[0]
assert len(bin(t0)[2:]) == 32
#print(f"t = {t0}")
p0 = gcd(int(f1(t0)), n)
assert len(bin(p0)[2:]) == 512 and n % p0 == 0
#print(f"p = {p0}")
t = 2915836867
p = 12674045065380963936369006640913707206092165254372327547575287589116533343005456615635388048683828685030860153531390706945709086518510926980644275915726413
 
# step2: get q, r
n = n // p
m = Zmod(n)['m'].gen() # n = qr
f2 = 0*m+1997-c2
f3 = 0*m+1997-c3
for i in range(1, 20):
    f2 += (t*m)**i
    f3 += (t+m)**i
f2, f3 = f2.monic(), f3.monic()
try:
    while True:
        f2 = f2 - f3
        f2 = f2.monic()
        f3 = f3 - m*f2
        f3 = f3.monic()
except:
    a = int(list(f2)[-1])
    q = gcd(a, n)
    if q == 1:
        a = int(list(f3)[-1])
        q = gcd(a, n)
    assert len(bin(q)[2:]) == 256 and n % q == 0
    r = n // q
    assert len(bin(r)[2:]) == 256 and n % r == 0
#   print(f"q = {q}")
#   print(f"r = {r}")
q = 87038069032840052005520908272237788908169043580221040711149494083975743478969
r = 108016959681605076830977486416860687442307791371372085930591884056258926759899
 
# step3: get m
m = Zmod(q)['m'].gen()
f2 = 0*m+1997-c2
f3 = 0*m+1997-c3
for i in range(1, 20):
    f2 += (t*m)**i
    f3 += (t+m)**i
while f3:
    f2, f3 = f3, f2 % f3
fm = f2.monic()
m0 = int(-fm[0])
#print(f"m = {m0}")
m = 56985796272753226120469211992443340429346162287195965942430959147227534853120
assert(m < q)
for _ in range(2**24):
    try:
        print(long_to_bytes(m).decode())
        break
    except:
        m += q
        continue
#length of flag: 35
#dasctf{ShangPoXiaPoYaSiLeYiQianDuo}

dasctf{ShangPoXiaPoYaSiLeYiQianDuo}

如果你知道这个梗,甚至可以猜出flag

完结撒花


[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!

最后于 2024-1-29 22:58 被狗敦子编辑 ,原因: 修改了一些内容
上传的附件:
收藏
免费 1
支持
分享
最新回复 (1)
雪    币: 3573
活跃值: (31026)
能力值: ( LV2,RANK:10 )
在线值:
发帖
回帖
粉丝
2
感谢分享
2024-1-30 11:29
1
游客
登录 | 注册 方可回帖
返回
//