做到一道Linux逆向题跟踪rand(),用网上说的两种线性同余算法均不正确,于是查看源码找到了现版本linux C库的rand()和srand()实现。
rand()函数源码如下
可以看到,随机算法取决于buf->rand_type,同时buf->state也起到了至关重要的作用,进一步查看buf的类型struct random_data
rand_type默认为TYPE_3,故不是直接采用线性同余产生随机数;接着看下state,它指向了数组randtbl第一项索引,randtbl在此源文件中也有定义,是一个长度为31的数组(不含第一项)
再根据宏定义即可推出struct random_data中各项成员的含义(也可以直接看注释)
fptr:相当于循环队列的front指针,初始位置为4
rptr:相当于循环队列的rear指针,初始位置为1
endptr:指向数组末尾,以指示队列的循环
接着看回算法,简单分析可知,大概是队头自加队尾值,将此值保存为结果,然后队头队尾统一后移一项,再将结果作为生成的随机数返回即可。
此外,随机数的播种也是有必要了解的,查看源代码
即是根据传入的种子,经过一些算法扩展到整个state中,具体算法在注释中已经解释出来了,再调用rand()30次进行一定程度上的混淆。
大致就是如此,为了方便逆向使用脚本,我用python复刻了一遍代码,各位需要的自取
相关源代码分享在附件里
int
__random_r (buf, result)
struct random_data
*
buf;
int32_t
*
result;
{
int32_t
*
state;
if
(buf
=
=
NULL || result
=
=
NULL)
goto fail;
state
=
buf
-
>state;
if
(buf
-
>rand_type
=
=
TYPE_0)
{
int32_t val
=
state[
0
];
val
=
((state[
0
]
*
1103515245
)
+
12345
) &
0x7fffffff
;
state[
0
]
=
val;
*
result
=
val;
}
else
{
int32_t
*
fptr
=
buf
-
>fptr;
int32_t
*
rptr
=
buf
-
>rptr;
int32_t
*
end_ptr
=
buf
-
>end_ptr;
int32_t val;
val
=
*
fptr
+
=
*
rptr;
/
*
Chucking least random bit.
*
/
*
result
=
(val >>
1
) &
0x7fffffff
;
+
+
fptr;
if
(fptr >
=
end_ptr)
{
fptr
=
state;
+
+
rptr;
}
else
{
+
+
rptr;
if
(rptr >
=
end_ptr)
rptr
=
state;
}
buf
-
>fptr
=
fptr;
buf
-
>rptr
=
rptr;
}
return
0
;
fail:
__set_errno (EINVAL);
return
-
1
;
}
int
__random_r (buf, result)
struct random_data
*
buf;
int32_t
*
result;
{
int32_t
*
state;
if
(buf
=
=
NULL || result
=
=
NULL)
goto fail;
state
=
buf
-
>state;
if
(buf
-
>rand_type
=
=
TYPE_0)
{
int32_t val
=
state[
0
];
val
=
((state[
0
]
*
1103515245
)
+
12345
) &
0x7fffffff
;
state[
0
]
=
val;
*
result
=
val;
}
else
{
int32_t
*
fptr
=
buf
-
>fptr;
int32_t
*
rptr
=
buf
-
>rptr;
int32_t
*
end_ptr
=
buf
-
>end_ptr;
int32_t val;
val
=
*
fptr
+
=
*
rptr;
/
*
Chucking least random bit.
*
/
*
result
=
(val >>
1
) &
0x7fffffff
;
+
+
fptr;
if
(fptr >
=
end_ptr)
{
fptr
=
state;
+
+
rptr;
}
else
{
+
+
rptr;
if
(rptr >
=
end_ptr)
rptr
=
state;
}
buf
-
>fptr
=
fptr;
buf
-
>rptr
=
rptr;
}
return
0
;
fail:
__set_errno (EINVAL);
return
-
1
;
}
static struct random_data unsafe_state
=
{
/
*
FPTR
and
RPTR are two pointers into the state info, a front
and
a rear
pointer. These two pointers are always rand_sep places aparts, as they
cycle through the state information. (Yes, this does mean we could get
away with just one pointer, but the code
for
random
is
more efficient
this way). The pointers are left positioned as they would be
from
the call:
initstate(
1
, randtbl,
128
);
(The position of the rear pointer, rptr,
is
really
0
(as explained above
in
the initialization of randtbl) because the state table pointer
is
set
to point to randtbl[
1
] (as explained below).)
*
/
fptr : &randtbl[SEP_3
+
1
],
rptr : &randtbl[
1
],
/
*
The following things are the pointer to the state information table,
the
type
of the current generator, the degree of the current polynomial
being used,
and
the separation between the two pointers.
Note that
for
efficiency of random, we remember the first location of
the state information,
not
the zeroth. Hence it
is
valid to access
state[
-
1
], which
is
used to store the
type
of the R.N.G.
Also, we remember the last location, since this
is
more efficient than
indexing every time to find the address of the last element to see
if
the front
and
rear pointers have wrapped.
*
/
state : &randtbl[
1
],
rand_type : TYPE_3,
rand_deg : DEG_3,
rand_sep : SEP_3,
end_ptr : &randtbl[sizeof (randtbl)
/
sizeof (randtbl[
0
])]
};
static struct random_data unsafe_state
=
{
/
*
FPTR
and
RPTR are two pointers into the state info, a front
and
a rear
pointer. These two pointers are always rand_sep places aparts, as they
cycle through the state information. (Yes, this does mean we could get
away with just one pointer, but the code
for
random
is
more efficient
this way). The pointers are left positioned as they would be
from
the call:
initstate(
1
, randtbl,
128
);
(The position of the rear pointer, rptr,
is
really
0
(as explained above
in
the initialization of randtbl) because the state table pointer
is
set
to point to randtbl[
1
] (as explained below).)
*
/
fptr : &randtbl[SEP_3
+
1
],
rptr : &randtbl[
1
],
/
*
The following things are the pointer to the state information table,
the
type
of the current generator, the degree of the current polynomial
being used,
and
the separation between the two pointers.
Note that
for
efficiency of random, we remember the first location of
the state information,
not
the zeroth. Hence it
is
valid to access
state[
-
1
], which
is
used to store the
type
of the R.N.G.
Also, we remember the last location, since this
is
more efficient than
indexing every time to find the address of the last element to see
if
the front
and
rear pointers have wrapped.
*
/
state : &randtbl[
1
],
rand_type : TYPE_3,
rand_deg : DEG_3,
rand_sep : SEP_3,
end_ptr : &randtbl[sizeof (randtbl)
/
sizeof (randtbl[
0
])]
};
static int32_t randtbl[DEG_3
+
1
]
=
{
TYPE_3,
-
1726662223
,
379960547
,
1735697613
,
1040273694
,
1313901226
,
1627687941
,
-
179304937
,
-
2073333483
,
1780058412
,
-
1989503057
,
-
615974602
,
344556628
,
939512070
,
-
1249116260
,
1507946756
,
-
812545463
,
154635395
,
1388815473
,
-
1926676823
,
525320961
,
-
1009028674
,
968117788
,
-
123449607
,
1284210865
,
435012392
,
-
2017506339
,
-
911064859
,
-
370259173
,
1132637927
,
1398500161
,
-
205601318
,
};
static int32_t randtbl[DEG_3
+
1
]
=
{
TYPE_3,
-
1726662223
,
379960547
,
1735697613
,
1040273694
,
1313901226
,
1627687941
,
-
179304937
,
-
2073333483
,
1780058412
,
-
1989503057
,
-
615974602
,
344556628
,
939512070
,
-
1249116260
,
1507946756
,
-
812545463
,
154635395
,
1388815473
,
-
1926676823
,
525320961
,
-
1009028674
,
968117788
,
-
123449607
,
1284210865
,
435012392
,
-
2017506339
,
-
911064859
,
-
370259173
,
1132637927
,
1398500161
,
-
205601318
,
};
int
__srandom_r (seed, buf)
unsigned
int
seed;
struct random_data
*
buf;
{
int
type
;
int32_t
*
state;
long
int
i;
long
int
word;
int32_t
*
dst;
int
kc;
if
(buf
=
=
NULL)
goto fail;
type
=
buf
-
>rand_type;
if
((unsigned
int
)
type
>
=
MAX_TYPES)
goto fail;
state
=
buf
-
>state;
/
*
We must make sure the seed
is
not
0.
Take arbitrarily
1
in
this case.
*
/
if
(seed
=
=
0
)
seed
=
1
;
state[
0
]
=
seed;
if
(
type
=
=
TYPE_0)
goto done;
dst
=
state;
word
=
seed;
kc
=
buf
-
>rand_deg;
for
(i
=
1
; i < kc;
+
+
i)
{
/
*
This does:
state[i]
=
(
16807
*
state[i
-
1
])
%
2147483647
;
but avoids overflowing
31
bits.
*
/
long
int
hi
=
word
/
127773
;
long
int
lo
=
word
%
127773
;
word
=
16807
*
lo
-
2836
*
hi;
if
(word <
0
)
word
+
=
2147483647
;
*
+
+
dst
=
word;
}
buf
-
>fptr
=
&state[buf
-
>rand_sep];
buf
-
>rptr
=
&state[
0
];
kc
*
=
10
;
while
(
-
-
kc >
=
0
)
{
int32_t discard;
(void) __random_r (buf, &discard);
}
done:
return
0
;
fail:
return
-
1
;
}
int
__srandom_r (seed, buf)
unsigned
int
seed;
struct random_data
*
buf;
{
int
type
;
int32_t
*
state;
long
int
i;
long
int
word;
int32_t
*
dst;
[招生]系统0day安全班,企业级设备固件漏洞挖掘,Linux平台漏洞挖掘!
最后于 2022-7-19 15:48
被Ysiel编辑
,原因: 内容笔误