1 < E < L gcd(E,L)=1 之所以需要E和L的最大公约数为1是为了保证一定存在解密时需要使用的数D。现在我们已经求出了E和N也就是说我们已经生成了密钥对中的公钥了。
4.4 求D 数D是由数E计算出来的。D、E和L之间必须满足以下关系:
1 < D < L E*D mod L = 1 只要D满足上述2个条件,则通过E和N进行加密的密文就可以用D和N进行解密。 简单地说条件2是为了保证密文解密后的数据就是明文。 现在私钥自然也已经生成了,密钥对也就自然生成了。 小结下:
求N N= p * q ;p,q为质数 求L L=lcm(p-1,q-1) ;L为p-1、q-1的最小公倍数 求E 1 < E < L,gcd(E,L)=1;E,L最大公约数为1(E和L互质) 求D 1 < D < L,E*D mod L = 1 5 实践下吧 我们用具体的数字来实践下RSA的密钥对对生成,及其加解密对全过程。为方便我们使用较小数字来模拟。
5.1 求N 我们准备两个很小对质数, p = 17 q = 19 N = p * q = 323
5.2 求L L = lcm(p-1, q-1)= lcm(16,18) = 144 144为16和18对最小公倍数
5.3 求E 求E必须要满足2个条件:1 < E < L ,gcd(E,L)=1 即1 < E < 144,gcd(E,144) = 1 E和144互为质数,5显然满足上述2个条件 故E = 5
此时公钥=(E,N)= (5,323)
5.4 求D 求D也必须满足2个条件:1 < D < L,E*D mod L = 1 即1 < D < 144,5 * D mod 144 = 1 显然当D= 29 时满足上述两个条件 1 < 29 < 144 5*29 mod 144 = 145 mod 144 = 1 此时私钥=(D,N)=(29,323)