-
-
[原创]32bits Montgomery模乘演示代码!
-
发表于: 2015-5-12 15:52 3999
-
别问我数学问题, 数学原理我一点不懂, 我只是照着网上Montgomery模乘的论文写下来的.
======================
#include <iostream>
using namespace std;
unsigned long ModInv(unsigned long A, unsigned long P)
{
unsigned long u = A, v = P;
unsigned long x1 = 1, x2 = 0, flag=0;
unsigned long q, r, x;
while (u != 1)
{
q = v/u; r = v%u; x = q*x1 + x2;
v = u; u = r; x2 = x1; x1 = x;
flag ^= 1;
}
if (flag == 1)
{
P -= x1;
return P;
}
return x1%P;
};
// 偏移数.
unsigned deg_num(unsigned long A)
{
unsigned i = 0;
while (A != 1)
{
A >>= 1;
i += 1;
}
return i;
};
unsigned long deg_bit(unsigned long A)
{
unsigned long i = 1;
while (A != 1)
{
A >>= 1;
i <<= 1;
}
return i;
};
// return R^(-1) * R * R mod P
unsigned long GetendR(unsigned long R, unsigned long P)
{
unsigned long long t;
// t = R^(-1)
t = ModInv(R, P);
t *= R;
t %= P;
t *= R;
t %= P;
return (unsigned long)t;
};
// Montgomery模乘: 对R的"模"和"除"都可以通过"移位"和"比特与"来进行, 这里只是演示过程.
// 而这恰恰是提高效率的部分, 省去模和除.
unsigned long Mont(unsigned long A, unsigned long B, unsigned long P1, unsigned long P, unsigned long R)
{
unsigned long long t1, t2;
// t1 = A * B;
t1 = A;
t1 *= B;
// t2 = (t1 * P1) % R;
t2 = (t1 * P1) % R;
// P1 是 P mod R的负逆, 所以减.
t2 = R - t2;
// t1 = (t1 + t2 * P) / R;
t1 += (t2 * P);
t1 /= R;
if (t1 >= P) t1 -= P;
return (unsigned long)t1;
};
int main()
{
cout << "Hello, world" << endl;
////////////////////////////////////////
unsigned long A, B, P = 65521;
unsigned long n, R, P1; // P1 = -P^(-1) mod R
for (unsigned i=0; i<40; i++)
{
A = rand()*rand();
B = rand()*rand();
A %= P;
B %= P;
// 先求出正确值.
{
unsigned long long t = A;
t *= B;
t %= P;
cout << "\n(A*B) mod P : " << t << endl;
}
////////////////
// P 与 R必须互素, 鉴于P是素数, 就没有必要计算 GCD(P, R) == 1;
// 2^(n-1) <= P <= 2^n; R = 2^n;
// P = 65521 == 1111111111110001 (素数)
// R = 65536 == 10000000000000000
n = deg_num(P) + 1;
R = 1;
R <<= n;
// P1 = "-" P^(-1) mod R; P1 是 P mod R的逆, 而且是负数.
P1 = ModInv(P, R);
{
// t = (A * B * R^(-1)) mod P;
unsigned long long t = Mont(A, B, P1, P, R);
// 由于 t = (A * B * R^(-1)) mod P;
// 所以 t 转换为 (A * B) mod P; (脱去蒙哥马利表示)
// A * B mod P = t * R * R * R^(-1) mod P;
// t *= GetendR(R, P);
// ??? 乘以一个R不可以吗? 为什么要乘以R * R * R^(-1)
// A * B mod P = t * R mod P;
t *= R;
t %= P;
cout << "Mont() mod P : " << t << endl;
}
}
return 0;
};
======================
#include <iostream>
using namespace std;
unsigned long ModInv(unsigned long A, unsigned long P)
{
unsigned long u = A, v = P;
unsigned long x1 = 1, x2 = 0, flag=0;
unsigned long q, r, x;
while (u != 1)
{
q = v/u; r = v%u; x = q*x1 + x2;
v = u; u = r; x2 = x1; x1 = x;
flag ^= 1;
}
if (flag == 1)
{
P -= x1;
return P;
}
return x1%P;
};
// 偏移数.
unsigned deg_num(unsigned long A)
{
unsigned i = 0;
while (A != 1)
{
A >>= 1;
i += 1;
}
return i;
};
unsigned long deg_bit(unsigned long A)
{
unsigned long i = 1;
while (A != 1)
{
A >>= 1;
i <<= 1;
}
return i;
};
// return R^(-1) * R * R mod P
unsigned long GetendR(unsigned long R, unsigned long P)
{
unsigned long long t;
// t = R^(-1)
t = ModInv(R, P);
t *= R;
t %= P;
t *= R;
t %= P;
return (unsigned long)t;
};
// Montgomery模乘: 对R的"模"和"除"都可以通过"移位"和"比特与"来进行, 这里只是演示过程.
// 而这恰恰是提高效率的部分, 省去模和除.
unsigned long Mont(unsigned long A, unsigned long B, unsigned long P1, unsigned long P, unsigned long R)
{
unsigned long long t1, t2;
// t1 = A * B;
t1 = A;
t1 *= B;
// t2 = (t1 * P1) % R;
t2 = (t1 * P1) % R;
// P1 是 P mod R的负逆, 所以减.
t2 = R - t2;
// t1 = (t1 + t2 * P) / R;
t1 += (t2 * P);
t1 /= R;
if (t1 >= P) t1 -= P;
return (unsigned long)t1;
};
int main()
{
cout << "Hello, world" << endl;
////////////////////////////////////////
unsigned long A, B, P = 65521;
unsigned long n, R, P1; // P1 = -P^(-1) mod R
for (unsigned i=0; i<40; i++)
{
A = rand()*rand();
B = rand()*rand();
A %= P;
B %= P;
// 先求出正确值.
{
unsigned long long t = A;
t *= B;
t %= P;
cout << "\n(A*B) mod P : " << t << endl;
}
////////////////
// P 与 R必须互素, 鉴于P是素数, 就没有必要计算 GCD(P, R) == 1;
// 2^(n-1) <= P <= 2^n; R = 2^n;
// P = 65521 == 1111111111110001 (素数)
// R = 65536 == 10000000000000000
n = deg_num(P) + 1;
R = 1;
R <<= n;
// P1 = "-" P^(-1) mod R; P1 是 P mod R的逆, 而且是负数.
P1 = ModInv(P, R);
{
// t = (A * B * R^(-1)) mod P;
unsigned long long t = Mont(A, B, P1, P, R);
// 由于 t = (A * B * R^(-1)) mod P;
// 所以 t 转换为 (A * B) mod P; (脱去蒙哥马利表示)
// A * B mod P = t * R * R * R^(-1) mod P;
// t *= GetendR(R, P);
// ??? 乘以一个R不可以吗? 为什么要乘以R * R * R^(-1)
// A * B mod P = t * R mod P;
t *= R;
t %= P;
cout << "Mont() mod P : " << t << endl;
}
}
return 0;
};
[培训]内核驱动高级班,冲击BAT一流互联网大厂工作,每周日13:00-18:00直播授课
赞赏
他的文章
看原图
赞赏
雪币:
留言: