D:\OpenSSH\bin>ssh-keygen --help
ssh-keygen: unknown option -- -
Usage: ssh-keygen [options]
Options:
-b bits Number of bits in the key to create.
-c Change comment in private and public key files.
-e Convert OpenSSH to IETF SECSH key file.
-f filename Filename of the key file.
-g Use generic DNS resource record format.
-i Convert IETF SECSH to OpenSSH key file.
-l Show fingerprint of key file.
-p Change passphrase of private key file.
-q Quiet.
-y Read private key file and print public key.
-t type Specify type of key to create.
-B Show bubblebabble digest of key file.
-C comment Provide new comment.
-N phrase Provide new passphrase.
-P phrase Provide old passphrase. -r hostname Print DNS resource record. -G file Generate candidates for DH-GEX moduli
-T file Screen candidates for DH-GEX moduli
D:\OpenSSH\bin>ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/cygdrive/c/Documents and Settings/Administ
rator/.ssh/id_rsa):
OPENSSL OPENSSH
OpenSSL> dsaparam -genkey -text 123.txt -outform PEM
Loading 'screen' into random state - done
Generating DSA parameters, 123 bit long prime
This could take some time
......+.......+.+......+......................+.+......................+........
..+.+..............+++++++++++++++++++++++++++++++++++++++++++++++++++*
.....+..........+....+..........................................................
...+...+....................+...+.....+........+.........+................+....+
......+++++++++++++++++++++++++++++++++++++++++++++++++++*
DSA-Parameters: (512 bit)
p:
00:ca:10:54:1b:5d:fc:78:cc:7c:bd:a6:7d:2d:a1:
6b:67:12:c3:23:c0:56:93:71:8b:a7:54:84:a4:85:
df:0f:46:63:e5:6d:4c:94:d1:f6:32:02:36:04:b8:
88:a6:dc:db:56:f3:6b:92:7d:34:4e:af:ff:a6:5a:
d6:38:93:b8:e7
q:
00:e2:31:06:81:e5:80:32:d6:a6:86:9b:e9:2f:41:
65:9d:7e:6a:a7:1f
g:
14:54:3a:94:70:42:58:fa:95:20:c9:c9:4f:4a:dc:
6d:dc:41:e2:b0:8e:10:c5:68:8d:a9:aa:c0:27:39:
c4:e3:76:54:b9:7b:54:4a:ea:d6:dd:41:06:dd:63:
6f:07:84:56:7c:45:b0:c6:a2:9d:37:e8:62:12:f7:
23:29:ac:e6
-----BEGIN DSA PARAMETERS-----
MIGcAkEAyhBUG138eMx8vaZ9LaFrZxLDI8BWk3GLp1SEpIXfD0Zj5W1MlNH2MgI2
BLiIptzbVvNrkn00Tq//plrWOJO45wIVAOIxBoHlgDLWpoab6S9BZZ1+aqcfAkAU
VDqUcEJY+pUgyclPStxt3EHisI4QxWiNqarAJznE43ZUuXtUSurW3UEG3WNvB4RW
fEWwxqKdN+hiEvcjKazm
-----END DSA PARAMETERS-----
-----BEGIN DSA PRIVATE KEY-----
MIH3AgEAAkEAyhBUG138eMx8vaZ9LaFrZxLDI8BWk3GLp1SEpIXfD0Zj5W1MlNH2
MgI2BLiIptzbVvNrkn00Tq//plrWOJO45wIVAOIxBoHlgDLWpoab6S9BZZ1+aqcf
AkAUVDqUcEJY+pUgyclPStxt3EHisI4QxWiNqarAJznE43ZUuXtUSurW3UEG3WNv
B4RWfEWwxqKdN+hiEvcjKazmAkA1MwoGXnfEXM0kS+b49MV/hp8CR6ZgBQZ7wmCk
k6nkAp4bEmqaLXzvljeP5GlK3osREOZ1UZ6O1nm0d6mjQL6pAhR4h+3jPizhUPTJ
Hakn9Eb5s+xaVQ==
-----END DSA PRIVATE KEY-----
-out file - output the key to 'file'
-des - encrypt the generated key with DES in cbc mode
-des3 - encrypt the generated key with DES in ede cbc mode (168 bit key)
-idea - encrypt the generated key with IDEA in cbc mode
-aes128, -aes192, -aes256
encrypt PEM output with cbc aes
-engine e - use engine e, possibly a hardware device.
-rand file;file;...
- load the file (or the files in the directory) into
the random number generatordsaparam-file
- a DSA parameter file as generated by the dsaparam command
---- BEGIN SSH2 PUBLIC KEY ----
Comment: "rsa-key-20111207"
AAAAB3NzaC1yc2EAAAABJQAAACEAsL2MwYNNi2zvzqgSaeN2dEys2V9ifJxXaK8I
CqpUPwM=
---- END SSH2 PUBLIC KEY ----
a:=688^79 mod 3337;
a;
b:=232^79 mod 3337;
b;
s:=a*b mod 3337;
s;
c:=688*232;
c;
d:=c ^79 mod 3337;
d;
s eq d;
aa:=123456789^765 mod 1871111111111111;
aa;
bb:=987654321^765 mod 1871111111111111;
bb;
kk:=134583423333333333444444438899^765 mod 1871111111111111;
kk;
ss:=aa*bb*kk mod 1871111111111111;
ss;
cc:=(123456789*987654321*134583423333333333444444438899)^765 mod 1871111111111111;
cc;
In mathematics, an isogeny is a morphism of varieties between two abelian varieties (e.g. elliptic curves) that is surjective and has a finite kernel. Every isogeny is automatically a group homomorphism between the groups of k-valued points of A and B, for any field k over which f is defined.
Contents
1 Etymology
2 Case of elliptic curves
3 See also
4 References
[edit] Etymology
From the Greek (iso-) and Latin (genus), the term isogeny means "equal origins", a reference to the geometrical fact that an isogeny sends the point at infinity (the origin) of the source elliptic curve to the point at infinity of the target elliptic curve.
[edit] Case of elliptic curves
For elliptic curves, this notion can also be formulated as follows:
Let E1 and E2 be elliptic curves over a field k. An isogeny between E1 and E2 is a surjective morphism of varieties that preserves basepoints (i.e. f maps the infinite point on E1 to that on E2).
Two elliptic curves E1 and E2 are called isogenous if there is an isogeny . This is an equivalence relation, symmetry being due to the existence of the dual isogeny. As above, every isogeny induces homomorphisms of the groups of the k-valued points of the elliptic curves.
椭圆曲线自同态《信息安全中的数学方法与技术》冯登国书里举了4个例子
1:
p mod4==1,iy的i要求是4阶点,随机验了5个点都没问题:
y^2=x^3+21x
f: (x,y)------>(-x,iy)
-x^3-21x = i^2*y^2=-y^2
p:=NextPrime (13);
p;
pp:=p mod 4;
pp;
K := FiniteField(p);
K;
E := EllipticCurve([K|0,0,0,21,0]);
E;
v:=# E;
v;
FactoredOrder(E) ;
Trace(E);
Elliptic Curve defined by y^2 + x*y = x^3 + 1 over GF(2^101)
2535301200456455833701195805484
1
Abelian Group isomorphic to Z/2
Defined on 1 generator
Relations:
2*$.1 = 0
Mapping from: Abelian Group isomorphic to Z/2
Defined on 1 generator
Relations:
2*$.1 = 0 to Power Structure of MapSch given by a rule [no inverse]
[ <2, 2>, <1211597, 1>, <523132114155213291569143, 1> ]
Elliptic curve isogeny from: CrvEll: E to Elliptic Curve defined by y^2 + x*y =
x^3 + 1 over GF(2^101)
taking (x : y : 1) to (x^2 : y^2 : 1)
Elliptic Curve defined by y^2 + x*y = x^3 + 1 over GF(2^101)
Elliptic curve isogeny from: CrvEll: E to Elliptic Curve defined by y^2 + x*y =
x^3 + 1 over GF(2^101)
taking (x : y : 1) to (x^8 : y^8 : 1)
Elliptic Curve defined by y^2 + x*y = x^3 + 1 over GF(2^101)
2969292210605269
Mapping from: CrvEll: E1 to CrvEll: E2 given by a rule [no inverse]
Have fun to reverse engineer the windows key container's implementation (rsaenh.dll). And then you'll find out there is an answer, but not a result. Remember there is no spoon.