-
-
[原创]常见密码算法总结--(4)加密模式的openssl代码分析之cfb模式
-
发表于: 2010-6-16 12:39 6109
-
其他见:
《常见密码算法总结--(1)分组对称密码》见
http://bbs.pediy.com/showthread.php?t=113921
http://blog.csdn.net/NJZhuJinhua/archive/2010/05/27/5629455.aspx
《常见密码算法总结--(2)分组密码加密模式》见
http://bbs.pediy.com/showthread.php?t=114169
http://blog.csdn.net/NJZhuJinhua/archive/2010/05/30/5635313.aspx
《常见密码算法总结--(3)加密模式的openssl代码分析之cbc模式》
NJZhuJinhua@csdn May.30, 2010
http://bbs.pediy.com/showthread.php?t=114170
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/NJZhuJinhua/archive/2010/05/30/5635343.aspx
NJZhuJinhua@csdn Jun.6, 2010
转载请注明出处。
(2)CRYPTO_cfb128_encrypt CRYPTO_cfb128_1_encrypt CRYPTO_cfb128_8_encrypt
这三个实现了cfb模式的三种制式。其函数声明见上文描述。
这三种均被seed_cfb.c cmll_cfb.c aes_cfb.c引用。
在aes_cfb.c内使用情况如下:
上述中的cfb1,cfb8,cfb128分别指cfb模式中分组继续分段的段的大小,分别为1位,8位机128位
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/NJZhuJinhua/archive/2010/06/06/5651871.aspx
《常见密码算法总结--(1)分组对称密码》见
http://bbs.pediy.com/showthread.php?t=113921
http://blog.csdn.net/NJZhuJinhua/archive/2010/05/27/5629455.aspx
《常见密码算法总结--(2)分组密码加密模式》见
http://bbs.pediy.com/showthread.php?t=114169
http://blog.csdn.net/NJZhuJinhua/archive/2010/05/30/5635313.aspx
《常见密码算法总结--(3)加密模式的openssl代码分析之cbc模式》
NJZhuJinhua@csdn May.30, 2010
http://bbs.pediy.com/showthread.php?t=114170
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/NJZhuJinhua/archive/2010/05/30/5635343.aspx
NJZhuJinhua@csdn Jun.6, 2010
转载请注明出处。
(2)CRYPTO_cfb128_encrypt CRYPTO_cfb128_1_encrypt CRYPTO_cfb128_8_encrypt
这三个实现了cfb模式的三种制式。其函数声明见上文描述。
这三种均被seed_cfb.c cmll_cfb.c aes_cfb.c引用。
在aes_cfb.c内使用情况如下:
void AES_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_encrypt(in,out,length,key,ivec,num,enc,(block128_f)AES_encrypt); } /* N.B. This expects the input to be packed, MS bit first */ void AES_cfb1_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_1_encrypt(in,out,length,key,ivec,num,enc,(block128_f)AES_encrypt); } void AES_cfb8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_8_encrypt(in,out,length,key,ivec,num,enc,(block128_f)AES_encrypt); }
上述中的cfb1,cfb8,cfb128分别指cfb模式中分组继续分段的段的大小,分别为1位,8位机128位
/* The input and output encrypted as though 128bit cfb mode is being * used. The extra state information to record how much of the * 128bit block we have used is contained in *num; */ void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { unsigned int n; size_t l = 0; assert(in && out && key && ivec && num); n = *num; if (enc) 加密时 { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16%sizeof(size_t) == 0) /* always true actually */ { do { while (n && len) { *(out++) = ivec[n] ^= *(in++); --len; n = (n+1) % 16; } 上述代码段中n最多在n,(n+1)%16,...,15之间,len最多在len,len-1,...,len-14之间变动,具体变动范围还要看16-n与len的关系。 16-n>len时 依次执行的是ivec[n...n+(len-1)]和明文in[0...(len-1)]的异或,之后len的值变为0了,即明文已用完。 假设len为6, n=3的话是 ivec [0 1 2 3 4 5 6 7 8 9 0 a b c d e f] in [0 1 2 3 4 5] 的异或得到out,此时得到的out后后面没机会执行了,没加密意义。 16-n<=len时依次执行的是ivec[n...n+(len-1)]和明文in[0...(15-n)]的异或,之后n的值变为0了。 假设len为>=13, n=3的话是 ivec [0 1 2 3 4 5 6 7 8 9 a b c d e f] in [0 1 2 3 4 5 6 7 8 9 a b c] 的异或得到out及新的ivec,如 out[0]=ivec[3]^in[0];out[c]=ivec[f]^in[c],out[d]=0; ivec[0]=ivec[0],ivec[5]=ivec[5]^in[2]; 如上生成的out均算是成品了, #if defined(STRICT_ALIGNMENT) if (((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0) break; #endif while (len>=16) { 对于剩余的明文长度大于等于16时进行迭代,即用密钥key加密上面或上一次的本处循环生成的生成ivec,ivec的密文继续作为ivec,并与明文分组进行异或。如此循环知道len<16了 (*block)(ivec, ivec, key); for (n=0; n<16; n+=sizeof(size_t)) { *(size_t*)(out+n) = *(size_t*)(ivec+n) ^= *(size_t*)(in+n); } len -= 16; out += 16; in += 16; } n = 0; if (len) {这里意味着len大于0小于16了,那么生成新的一组流ivec,并将前len长度字节与剩余的len长度明文进行异或,得到最后不足一分组的密文输出。 (*block)(ivec, ivec, key); while (len--) { out[n] = ivec[n] ^= in[n]; ++n; } } *num = n; 设置num值,这里n为最后一个ivec那个使用的字节数。 设明文长度为len,入参*num值为num_in可以推断出,出参*num值为(len+(num_in-1))%16 return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l<len) {这里根本就不会执行 if (n == 0) { (*block)(ivec, ivec, key); } out[l] = ivec[n] ^= in[l]; ++l; n = (n+1) % 16; } *num = n; } else { //解密 原理同上,只是一个逆过程,不再赘述。 #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16%sizeof(size_t) == 0) do { /* always true actually */ while (n && len) { unsigned char c; *(out++) = ivec[n] ^ (c = *(in++)); ivec[n] = c; --len; n = (n+1) % 16; } #if defined(STRICT_ALIGNMENT) if (((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0) break; #endif while (len>=16) { (*block)(ivec, ivec, key); for (n=0; n<16; n+=sizeof(size_t)) { size_t t = *(size_t*)(in+n); *(size_t*)(out+n) = *(size_t*)(ivec+n) ^ t; *(size_t*)(ivec+n) = t; } len -= 16; out += 16; in += 16; } n = 0; if (len) { (*block)(ivec, ivec, key); while (len--) { unsigned char c; out[n] = ivec[n] ^ (c = in[n]); ivec[n] = c; ++n; } } *num = n; return; } while (0); /* the rest would be commonly eliminated by x86* compiler */ #endif while (l<len) { unsigned char c; if (n == 0) { (*block)(ivec, ivec, key); } out[l] = ivec[n] ^ (c = in[l]); ivec[n] = c; ++l; n = (n+1) % 16; } *num=n; } } /* This expects a single block of size nbits for both in and out. Note that it corrupts any extra bits in the last byte of out */ static void cfbr_encrypt_block(const unsigned char *in,unsigned char *out, int nbits,const void *key, unsigned char ivec[16],int enc, block128_f block) { int n,rem,num; unsigned char ovec[16*2 + 1]; /* +1 because we dererefence (but don't use) one byte off the end */ if (nbits<=0 || nbits>128) return; /* fill in the first half of the new IV with the current IV */ memcpy(ovec,ivec,16); //向量变化:ovec=ivec[0...15]|NULL /* construct the new IV */ (*block)(ivec,ivec,key); //Ek(ivec) num = (nbits+7)/8; // nbits位对应的字节数 if (enc) /* encrypt the input */ { // 对应加密过程 for(n=0 ; n < num ; ++n) out[n] = (ovec[16+n] = in[n] ^ ivec[n]); // 设1<=nbits<=8 则num为1。则此处仅 // out[0]=ovec[16]=in[0]^ivec[0]=in[0]^(Ek(ivec))[0]; //向量变化:ovec=ivec[0...15]|in[0]^(Ek(ivec))[0]; } else /* decrypt the input */ { // 对应解密过程 for(n=0 ; n < num ; ++n) out[n] = (ovec[16+n] = in[n]) ^ ivec[n]; // 与上完全一样,不过in代表密文,out代表输出的明文了 //向量变化:ovec=ivec[0...15]|in[0]^(Ek(ivec))[0]; } /* shift ovec left... */ rem = nbits%8; //ovec要左移的位数 num = nbits/8; if(rem==0) { // 可见 1<=num<=16 memcpy(ivec,ovec+num,16); //如果在nbits为8的整倍数的时候,如8时用ivec[1...15]|(Ek(ivec)[0]^in[0]) 作为下一轮的ivec //如nbits为16时用ivec[2...15]|(Ek(ivec)[0]^in[0])|(Ek(ivec)[1]^in[1]) 作为下一轮的ivec //向量变化:ivec=ivec[num...15]|in[0...(num-1)]^(Ek(ivec))[0...(num-1)]; } else { // 可见 0<=num<=15 for(n=0 ; n < 16 ; ++n) { ivec[n] = ovec[n+num]<<rem | ovec[n+num+1]>>(8-rem); } //如果nbits不为8的倍数,则需要将ivec[num]字节的右边低8-rem位直到ivec[16+num]的左边高rem位共计128位作为下一轮的ivec } /* it is not necessary to cleanse ovec, since the IV is not secret */ } /* N.B. This expects the input to be packed, MS bit first */ void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out, size_t bits, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; unsigned char c[1],d[1]; assert(in && out && key && ivec && num); assert(*num == 0); for(n=0 ; n<bits ; ++n) { c[0]=(in[n/8]&(1 << (7-n%8))) ? 0x80 : 0; // in的第n位为1 则 c[0]=0x80 否则 c[0]=0;即最高位为in的第n位的值,其他位为0. cfbr_encrypt_block(c,d,1,key,ivec,enc,block); out[n/8]=(out[n/8]&~(1 << (unsigned int)(7-n%8))) | ((d[0]&0x80) >> (unsigned int)(n%8)); //设置out结果的第n位为d[0]最高位的值。 } } void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; assert(in && out && key && ivec && num); assert(*num == 0); for(n=0 ; n<length ; ++n) cfbr_encrypt_block(&in[n],&out[n],8,key,ivec,enc,block); //对于每次偏移位数为8时,为整字节运算,本函数的第3参数为字节数。 }
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/NJZhuJinhua/archive/2010/06/06/5651871.aspx
[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!
赞赏
他的文章
看原图
赞赏
雪币:
留言: