{ Assembly function to get CPU type including Pentium and later }
push DS
{ First check for an 8086 CPU }
{ Bits 12-15 of the FLAGS register are always set on the }
{ 8086 processor. }
pushf { save EFLAGS }
pop bx { store EFLAGS in BX }
mov ax,0fffh { clear bits 12-15 }
and ax,bx { in EFLAGS }
push ax { store new EFLAGS value on stack }
popf { replace current EFLAGS value }
pushf { set new EFLAGS }
pop ax { store new EFLAGS in AX }
and ax,0f000h { if bits 12-15 are set, then CPU }
cmp ax,0f000h { is an 8086/8088 }
mov ax, i8086CPU { turn on 8086/8088 flag }
je @@End_CpuType
{ 80286 CPU check }
{ Bits 12-15 of the FLAGS register are always clear on the }
{ 80286 processor. }
{ Commented out because 'pop ax' crashes it to the DOS prompt when running }
{ with a Delphi form on some Machines.}
{ or bx,0f000h } { try to set bits 12-15 }
{ push bx }
{ popf }
{ pushf }
{ pop ax } { This crashes Delphi programs on some machines }
{ and ax,0f000h } { if bits 12-15 are cleared, CPU=80286 }
{ mov ax, i286CPU } { turn on 80286 flag }
{ jz @@End_CpuType }
{ To test for 386 or better, we need to use 32 bit instructions,
but the 16-bit Delphi assembler does not recognize the 32 bit opcodes
or operands. Instead, use the 66H operand size prefix to change
each instruction to its 32-bit equivalent. For 32-bit immediate
operands, we also need to store the high word of the operand immediately
following the instruction. The 32-bit instruction is shown in a comment
after the 66H instruction.
}
{ i386 CPU check }
{ The AC bit, bit #18, is a new bit introduced in the EFLAGS }
{ register on the i486 DX CPU to generate alignment faults. }
{ This bit can not be set on the i386 CPU. }
db 66h { pushfd }
pushf
db 66h { pop eax }
pop ax { get original EFLAGS }
db 66h { mov ecx, eax }
mov cx,ax { save original EFLAGS }
db 66h { xor eax,40000h }
xor ax,0h { flip AC bit in EFLAGS }
dw 0004h
db 66h { push eax }
push ax { save for EFLAGS }
db 66h { popfd }
popf { copy to EFLAGS }
db 66h { pushfd }
pushf { push EFLAGS }
db 66h { pop eax }
pop ax { get new EFLAGS value }
db 66h { xor eax,ecx }
xor ax,cx { can't toggle AC bit, CPU=Intel386 }
mov ax, i386CPU { turn on 386 flag }
je @@End_CpuType
{ i486 DX CPU / i487 SX MCP and i486 SX CPU checking }
{ Checking for ability to set/clear ID flag (Bit 21) in EFLAGS }
{ which indicates the presence of a processor }
{ with the ability to use the CPUID instruction. }
db 66h { pushfd }
pushf { push original EFLAGS }
db 66h { pop eax }
pop ax { get original EFLAGS in eax }
db 66h { mov ecx, eax }
mov cx,ax { save original EFLAGS in ecx }
db 66h { xor eax,200000h }
xor ax,0h { flip ID bit in EFLAGS }
dw 0020h
db 66h { push eax }
push ax { save for EFLAGS }
db 66h { popfd }
popf { copy to EFLAGS }
db 66h { pushfd }
pushf { push EFLAGS }
db 66h { pop eax }
pop ax { get new EFLAGS value }
db 66h { xor eax, ecx }
xor ax, cx
mov ax, i486CPU { turn on i486 flag }
je @@End_CpuType { if ID bit cannot be changed, CPU=486 }
{ without CPUID instruction functionality }
{ Execute CPUID instruction to determine vendor, family, }
{ model and stepping. The use of the CPUID instruction used }
{ in this program can be used for B0 and later steppings }
{ of the P5 processor. }
db 66h { mov eax, 1 }
mov ax, 1 { set up for CPUID instruction }
dw 0
db 66h { cpuid }
db 0Fh { Hardcoded opcode for CPUID instruction }
db 0a2h
db 66h { and eax, 0F00H }
and ax, 0F00H { mask everything but family }
dw 0
db 66h { shr eax, 8 }
shr ax, 8 { shift the cpu type down to the low byte }
sub ax, 1 { subtract 1 to map to TCpuType }