首页
社区
课程
招聘
[原创]京麒CTF2024-HarmonyOS移动端Native层逆向
2024-6-5 06:47 8449

[原创]京麒CTF2024-HarmonyOS移动端Native层逆向

2024-6-5 06:47
8449

鸿蒙HarmonyOS逆向

找到的工具:HapViewer 发行版 - Gitee.com

查找鸿蒙.hap源码

鸿蒙逆向目前没有完整的逆向工具所以手动逆向:
先将.hap文件后缀更改为.zip解压后就可以看见.hap的文件结构了!

.abc文件类似于安卓的.dex文件,直接用txt文本打开发现并没有进行加密或者混淆源码直接在里面!

发现需要用utf-8可以解决部分中文乱码!

提取出主要的代码:

    constructor(parent, params, __localStorage, elmtId = -1) {
        super(parent, __localStorage, elmtId);
        this.context = getContext(this);
        this.__message = new ObservedPropertySimplePU('请输入flag', this, "message");
        this.__button_name = new ObservedPropertySimplePU('提交', this, "button_name");
        this.__flag = new ObservedPropertySimplePU('', this, "flag");
        this.__result = new ObservedPropertySimplePU('', this, "result");
        this.dialogController = new CustomDialogController({
            builder: () => {
                let jsDialog = new CustomDialogExample(this, {
                    textValue: this.__result,
                });
                jsDialog.setController(this.dialogController);
                ViewPU.create(jsDialog);
            }
        }, this);
        this.setInitiallyProvidedValue(params);
    }

这段代码初始化了一个flag提交框!!!

        this.observeComponentCreation((elmtId, isInitialRender) => {
            ViewStackProcessor.StartGetAccessRecordingFor(elmtId);
            Button.createWithLabel(this.button_name);
            Button.onClick(() => {
                this.context.resourceManager.getRawFileContent("bin").then((value) => {
                    var c = testNapi.check(this.flag, value);
                    if ((c & 0b100) === 0b100) {
                        this.result = '系统环境异常';
                    }
                    else if ((c & 0b10) === 0b10) {
                        this.result = 'flag格式错误';
                    }
                    else if ((c & 0b1) === 0b1) {
                        this.result = 'flag错误或系统环境异常';
                    }
                    else {
                        this.result = 'flag正确';
                    }
                    this.dialogController.open();
                });
            });
            if (!isInitialRender) {
                Button.pop();
            }
            ViewStackProcessor.StopGetAccessRecording();
        });

在txt里面找到了判断flag的按钮!!var c = testNapi.check(this.flag, value);
发现这里就有check函数可以判断flag!

锁定鸿蒙Native层方法check()

发现testNapi那么就可以对标安卓的Native层方法了:16.7:NAPI 加载原理(上) | 《ArkUI实战》
testNapi方法是写在libentry.so文件里!

拖入ida直接开始查找!
先了解鸿蒙的Native层方法注册流程(鸿蒙用的是魔改后的Node.js的原生库ffi-napi):
注册方法:RegisterEntryModule-》napi_module_register-》要注册方法的结构体napi_module

typedef struct napi_module {
    int nm_version;
    unsigned int nm_flags;
    void* nm_filename;
    napi_addon_register_func nm_register_func;
    void* nm_modname;
    void* nm_priv;
    void* reserved[4];
} napi_module;



发现这个check方法是在这里!

找到check方法!!

鸿蒙开发知识提前了解

这里有很多api特别重要先提前了解一波:
这些api的来源都是js的Node-API,华为用ArkTS又封装了一遍:
问chatgpt就可以知道他们的作用:

napi_get_cb_info
napi_get_value_string_utf8
napi_get_typedarray_info
napi_get_reference_value
napi_call_function
napi_create_int32
napi_coerce_to_bool

napi_call_function函数和TS的testNapi.register回调函数

在之前找到的源码区:

aboutToAppear() {
    // 注册 testNapi 处理程序,针对不同的 batteryInfo 属性进行比较和返回结果
    // 电池剩余电量差值判断
    testNapi.register(0, (a) => {
        var t = batteryInfo.batterySOC - a;
        var f;
        if (t > 0)
            f = 1;
        else if (t == 0)
            f = 0;
        else
            f = -1;
        return f === 0;
    });
...
    // 直接返回电池温度
    testNapi.register(262, () => {
        return batteryInfo.batteryTemperature;
    });
    // 直接返回电池是否存在
    testNapi.register(263, () => {
        return batteryInfo.isBatteryPresent;
    });
    // 直接返回电池容量等级
    testNapi.register(264, () => {
        return batteryInfo.batteryCapacityLevel;
    });
}

这些代码就是在ArkTS源码区注册的回调函数,Native层的napi_call_function函数可以通过序号调用这些ArkTs层的代码!

开始分析Native层方法check()方法

先进行部分分析,最后再汇总分析所有伪代码!

重点关注一下SO文件里的API函数

Native层的获取回调函数的函数:

// 通过bin_i的值获取注册在TS的代码,将注册的方法存放于reg_method_0
napi_get_reference_value(env, *(v29 + 40), &reg_method_0);
// 通过bin_i_or_100的值获取注册在TS的代码,将函数存放在reg_method_1
napi_get_reference_value(env, *(v36 + 40), &reg_method_1);

下面分析一下逻辑伪代码:

根据这个两个获取回调函数地址的函数我们可以猜测出check方法分为三个部分:

1. 根据bin[i]获取reg_method_0地址和reg_method_1地址的查找代码

2. 找到函数后根据bin[i+1]获取VM执行流程

  • bin[i+1] == 0
  • bin[i+1] == 1
  • bin[i+1] == 2

3. 在检查完环境问题后进行加密的重量级部分

根据bin[i+1]的值分析不同控制流所执行的逻辑

reg_method_1方法在被找到的那一刻就被执行了,返回值是method_1_ret:

1.当bin[i+1] == 0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
else if ( !keyvalue )// keyvalue==0,method_1_ret被转为int32,传入一个参数
{
//VM整体操作流程序号加4
  v40 = targetidx + 4;
//获取bin[i+3]作为整数
  napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg);
//调用reg_method_0(bin[i+3])得到返回值——》methodfun_0_ret
  napi_call_function(env,this,reg_method_0,1,&int_3_arg, &methodfun_0_ret);
//将reg_method_1函数的返回值作为switch_case_key
  napi_get_value_int32(env, method_1_ret, &method_1_ret_bool);// 转为int32
  LOBYTE(switch_case_key) = method_1_ret_bool;
}
 
1. VM整体操作流程序号加4
2. 获取bin[i+3]作为整数
3. 调用reg_method_0(bin[i+3])得到返回值——》methodfun_0_ret
4. 将reg_method_1函数的返回值作为switch_case_key
注:switch_case_key用来加密

2.当bin[i+1] == 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
v40 = targetidx + 3;//VM整体操作流程序号加上3
// keyvalue == 1,method_1_ret返回值被转为utf8,传入一个参数
if ( keyvalue == 1 )
  {
    //获取bin[i+2]的值作为size
     size = *(bin + targetidx + 2);
     //获取bin + v40中的字符串,其实就是bin[i+3]
     napi_create_string_utf8(env, bin + v40, size, &int_3_arg);
     v40 += size;//VM整体操作流程序号加上字符串的长度
     env_1 = env;
     //调用reg_method_0函数,将字符串int_3_arg传入reg_method_0函数
     napi_call_function(env, this, reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret);
     //得到返回值reg_method_0函数的返回值
     napi_get_value_string_utf8(env, method_1_ret, buf, 128LL, &stringlen1);
     if ( stringlen1 )
     {
....
}
1. VM整体操作流程序号加上3
2. 获取bin[i+2]的值作为size
3. 获取bin + v40中的字符串,其实就是bin[i+3]
4. VM整体操作流程序号加上字符串的长度
5. 调用reg_method_0函数,将字符串int_3_arg传入reg_method_0函数
6. 得到返回值reg_method_0函数的返回值

3.当bin[i+1] == 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
if ( keyvalue == 2 )// keyvalue == 2,method_1_ret的返回值被转为bool,传入一个参数
{
//获取bin[i+3]的值作为int_3_arg
  napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg);
  //转换类型int32-》bool
  napi_coerce_to_bool(env, int_3_arg, &int_3_arg);
  //调用reg_method_0(int_3_arg)->返回值methodfun_0_ret
  napi_call_function(env, this, reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret);
  //将reg_method_1函数的返回值作为switch_case_key
  napi_get_value_bool(env, method_1_ret, &method_1_ret_bool);
  LOBYTE(switch_case_key) = method_1_ret_bool;
  v40 = targetidx + 4;
}
1. 获取bin[i+3]的值作为int_3_arg
2. 转换类型int32-》bool
3. 调用reg_method_0(int_3_arg)
4. 将reg_method_1函数的返回值作为switch_case_key
注:switch_case_key用来加密

分析完执行流程通过Python来简化一下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def dump_bin(bin):
    d = []
    pc = 0
    while pc < len(bin):
        op = bin[pc]
        print('####################', pc, op)
 
        # 获取函数地址reg_method_0,通过bin[pc]查找
        # print('reg_method_0 = func[%d]' % (op))
        # 获取函数地址reg_method_1,通过bin[pc] | 0x100 查找
        #调用reg_method_1获得返回值
        print('method_1_ret = call func[%d]' % (op | 0x100))
        #获取操作类型
        type = bin[pc + 1]
        if type == 0 :
            print('method_0_ret = call func[%d](%d)' % (op, bin[pc + 3]))
            key = bin[pc + 3]
            pc += 4  
        elif type == 1:
            #获取bin中字符串的长度
            size = bin[pc + 2]
            s = bin[pc + 3: pc + 3 + size]
            print('method_0_ret = call func[%d](%s)' % (op, repr(s)))
            pc += 3 + size        
        elif type == 2 :
            print('method_0_ret = call func[%d](%d)' % (op, bin[pc + 3]))
            key = bin[pc + 3]
            pc += 4
        else:
            pc += 3
            assert False
        d.append((op, key))
    return d
with open(r'.\bin', 'rb') as file:
    encrypted_data = file.read()
 
print(dump_bin(encrypted_data))

得到执行流程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#################### 0 3
method_1_ret = call func[259]
method_0_ret = call func[3](1)
#################### 4 0
method_1_ret = call func[256]
method_0_ret = call func[0](100)
#################### 8 4
method_1_ret = call func[260]
method_0_ret = call func[4](10)
#################### 12 7
method_1_ret = call func[263]
method_0_ret = call func[7](0)
#################### 16 5
method_1_ret = call func[261]
method_0_ret = call func[5](b'hackers')
#################### 26 8
method_1_ret = call func[264]
method_0_ret = call func[8](1)
#################### 30 1
method_1_ret = call func[257]
method_0_ret = call func[1](3)
#################### 34 6
method_1_ret = call func[262]
method_0_ret = call func[6](50)
#################### 38 2
method_1_ret = call func[258]
method_0_ret = call func[2](2)

绕过ArkTS层的环境异常检测

ArkTS层注册的回调函数有很多我就截取了部分:

aboutToAppear() {
        // 电池插入类型差值判断
        testNapi.register(3, (a) => {
            var t = batteryInfo.pluggedType - a;
            var f;
            if (t > 0)
                f = 1;
            else if (t == 0)
                f = 0;
            else
                f = -1;
            return f === 0;
        });
        ....
        // 直接返回电池插入类型
        testNapi.register(259, () => {
            return batteryInfo.pluggedType;
        });
}

这里是写在ArkTS层的回调函数代码!
发现这些回调函数的id:3,259;0,256;等等...
这里监测环境异常主要是通过检查电池信息是否和预定的数据一样不一样则判定环境异常:

根据跑出来的回调函数的注册码在ArkTS层找函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
method_1_ret = call func[259]
// 直接返回电池插入类型
testNapi.register(259, () => {
    return batteryInfo.pluggedType;
});
 
method_0_ret = call func[3](1)
// 电池插入类型差值判断
testNapi.register(3, (a) => {
    var t = batteryInfo.pluggedType - a;
    var f;
    if (t > 0)
        f = 1;
    else if (t == 0)
        f = 0;
    else
        f = -1;
    return f === 0;
});

再根据so层的代码分析可以知道:
method_0_ret的返回值必须是非0才可以通过环境监测,这里也就是要求:

1
batteryInfo.pluggedType 的值等于 1  就可以通过环境检查!!

依次类推也就可以知道如何绕过环境监测了!
知识连接:OpenHarmony4.0源码解析之电源管理子系统 - 文章 OpenHarmony开发者论坛

batteryInfo.batterySOC           256
batteryInfo.chargingStatus       257
batteryInfo.healthStatus         258
batteryInfo.pluggedType          259
batteryInfo.voltage              260
batteryInfo.technology           261
batteryInfo.batteryTemperature   262
batteryInfo.isBatteryPresent     263
batteryInfo.batteryCapacityLevel 264

写个脚本来看看需要的设置的电池数据,来绕过环境异常检测:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def dump_bin(bin):
    d = []
    pc = 0
    while pc < len(bin):
        op = bin[pc]
        print('------------->', pc, op)
 
        # 获取函数地址reg_method_0,通过bin[pc]查找
        # print('reg_method_0 = func[%d]' % (op))
        # 获取函数地址reg_method_1,通过bin[pc] | 0x100 查找
        #调用reg_method_1获得返回值
        print('method_1_ret = call func[%d]' % (op | 0x100))
        if (op | 0x100) == 256 :
            print("batteryInfo.batterySOC:",end="")
        elif (op | 0x100) == 257 :
            print("batteryInfo.chargingStatus:",end="")
        elif (op | 0x100) == 258 :
            print("batteryInfo.healthStatus:",end="")
        elif (op | 0x100) == 259 :
            print("batteryInfo.pluggedType:",end="")
        elif (op | 0x100) == 260 :
            print("batteryInfo.voltage:",end="")
        elif (op | 0x100) == 261 :
            print("batteryInfo.technology:",end="")
        elif (op | 0x100) == 262 :
            print("batteryInfo.batteryTemperature:",end="")
        elif (op | 0x100) == 263 :
            print("batteryInfo.isBatteryPresent:",end="")
        elif (op | 0x100) == 264 :
            print("batteryInfo.batteryCapacityLevel:",end="")
        #获取操作类型
        type = bin[pc + 1]
        if type == 0 :
            print(bin[pc + 3])
            print('method_0_ret = call func[%d](%d)' % (op, bin[pc + 3]))
            key = bin[pc + 3]
            pc += 4  
        elif type == 1:
            #获取bin中字符串的长度
            size = bin[pc + 2]
            s = bin[pc + 3: pc + 3 + size]
            print(repr(s))
            print('method_0_ret = call func[%d](%s)' % (op, repr(s)))
            pc += 3 + size        
        elif type == 2 :
            print(bin[pc + 3])
            print('method_0_ret = call func[%d](%d)' % (op, bin[pc + 3]))
            key = bin[pc + 3]
            pc += 4
        else:
            pc += 3
            assert False
        d.append((op, key))
    return d
with open(r'.\bin', 'rb') as file:
    encrypted_data = file.read()
 
print(dump_bin(encrypted_data))

要求的电池环境,成功绕过:

-------------> 0 3
batteryInfo.pluggedType:1
-------------> 4 0
batteryInfo.batterySOC:100
-------------> 8 4
batteryInfo.voltage:10
-------------> 12 7
batteryInfo.isBatteryPresent:0
-------------> 16 5
batteryInfo.technology:b'hackers'
-------------> 26 8
batteryInfo.batteryCapacityLevel:1
-------------> 30 1
batteryInfo.chargingStatus:3
-------------> 34 6
batteryInfo.batteryTemperature:50
-------------> 38 2
batteryInfo.healthStatus:2

分析Check函数的加密逻辑

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
do
{
  if valuekey == 0:
        switch_case_key...
  if valuekey == 1:
        switch_case_key...
  if valuekey == 2:
        switch_case_key...
    ....
  switch ( bin_i )
  {
    case 0:
        ....
        v54 = switch_case_key & 0x3F | (switch_case_key >> 1) & 0x40 | (2 * switch_case_key) & 0x80;
        ....
    case 1:
        .....
    case 8:
        ....
  }
}
while ( v40 < bin_len );

继续分析发现switch里面的加密和switch_case_key的关系特别大,根据交叉引用可以找到相关逻辑:

根据bin[i+1]的值不同导致switch_case_key的值也不同

reg_method_1方法在被找到的那一刻就被执行了,返回值是method_1_ret

1.当bin[i+1] == 0

1
2
3
4
5
6
7
8
else if ( !keyvalue )   // keyvalue==0,method_1_ret被转为int32,传入一个参数
{
  v40 = targetidx + 4;
  napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg);
  napi_call_function(env, this, reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret);
  napi_get_value_int32(env, method_1_ret, &method_1_ret_bool);// 转为int32
  LOBYTE(switch_case_key) = method_1_ret_bool;
}

根据前面的ArkTS层函数的调用规则可以知道:

  1. reg_method_1函数就是用来返回当前电池状态信息的!
  2. 而reg_method_0函数就是用来检查电池信息是否符合要求的!
  3. 从而也就可以确定switch_case_key的值了!*(bin + targetidx + 3)
    用python脚本就是:
1
2
3
4
5
op = bin[pc]
type = bin[pc + 1]
if type == 0:
    key = bin[pc + 3]
    pc += 4

2.当bin[i+1] == 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
        if ( keyvalue == 1 ) // keyvalue == 1,method_1_ret返回值被转为utf8,传入一个参数
        {
          size = *(bin + targetidx + 2);
          napi_create_string_utf8(env, bin + v40, size, &int_3_arg);
          v40 += size;
          env_1 = env;
          napi_call_function(env, this, reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret);
          napi_get_value_string_utf8(env, method_1_ret, buf, 128LL, &stringlen1);
          if ( stringlen1 )
          {
            if ( stringlen1 < 0x20 )
            {
              idx1 = 0LL;
              switch_case_key = 0;
              goto LABEL_56;
            }
            idx1 = stringlen1 & 0xFFFFFFFFFFFFFFE0LL;
            if ( (stringlen1 & 0xFFFFFFFFFFFFFFE0LL) - 32 >= 0x60 )
            {
....
            while ( stringlen1 != idx1 )
LABEL_56:
              LOBYTE(switch_case_key) = buf[idx1++] ^ switch_case_key;
          }
          else
          {
            switch_case_key = 0;
          }
        }
  1. 通过前面的python脚本可知:bin[i+1] == 1的值会去检测:batteryInfo.technology:b'hackers'
  2. *(bin + targetidx + 2)是字符串长度
  3. 知道正确的电池信息后就可以知道 b'hackers'.len 等于 7 ,所以 stringlen1 < 0x20
  4. switch_case_key的计算流程就会进入LABEL_56
  5. 也就是下面的算法:
1
2
while ( stringlen1 != idx1 )
    LOBYTE(switch_case_key) = buf[idx1++] ^ switch_case_key;

用python脚本就是:

1
2
3
4
5
6
7
8
op = bin[pc]
type = bin[pc + 1]
elif type == 1:
    size = bin[pc + 2]
    s = bin[pc + 3: pc + 3 + size]
    key = 0
    for i in s: key ^= i
    pc += 3 + size

3.当bin[i+1] == 2

1
2
3
4
5
6
7
8
9
if ( keyvalue == 2 )   // keyvalue == 2,method_1_ret的返回值被转为bool,传入一个参数
{
  napi_create_int32(env, *(bin + targetidx + 3), &int_3_arg);
  napi_coerce_to_bool(env, int_3_arg, &int_3_arg);
  napi_call_function(env, this, reg_method_0, 1LL, &int_3_arg, &methodfun_0_ret);
  napi_get_value_bool(env, method_1_ret, &method_1_ret_bool);
  LOBYTE(switch_case_key) = method_1_ret_bool;
  v40 = targetidx + 4;
}

根据前面的ArkTS层函数的调用规则可以知道:

  1. reg_method_1函数就是用来返回当前电池状态信息的!
  2. 而reg_method_0函数就是用来检查电池信息是否符合要求的!
  3. 从而也就可以确定switch_case_key的值了!*(bin + targetidx + 3)
    用python脚本就是:
1
2
3
4
5
op = bin[pc]
type = bin[pc + 1]
if type == 2:
    key = bin[pc + 3]
    pc += 4

成功得到VMopcode的加密流程和加密密钥switch_case_key

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def dump_bin(bin):
    d = []
    pc = 0
    while pc < len(bin):
        op = bin[pc]
        type = bin[pc + 1]
        if type == 2 or type == 0:
            key = bin[pc + 3]
            pc += 4
        elif type == 1:
            size = bin[pc + 2]
            s = bin[pc + 3: pc + 3 + size]
            key = 0
            for i in s: key ^= i
            pc += 3 + size
        else:
            pc += 3
            assert False
        d.append((op, key))
    return d
 
with open(r'.\bin', 'rb') as file:
    encrypted_data = file.read()
 
print(dump_bin(encrypted_data))
# [(3, 1), (0, 100), (4, 10), (7, 0), (5, 101), (8, 1), (1, 3), (6, 50), (2, 2)]

第一个值是opcode,第二个值是key
加密流程和密钥;[(3, 1), (0, 100), (4, 10), (7, 0), (5, 101), (8, 1), (1, 3), (6, 50), (2, 2)]

加密算法部分解析(已解决)

拜读大佬wp,但是奈何大佬的代码跑不起来,而且最终加密后的flag数据对比的位置和加密后的数据也不知道怎么来的,最后无奈放弃QAQ
拜读大佬wp:‌‬​‌​​​‍⁠​​​⁠​‍​‬‬‍​​​‌⁠‌​​​​​‬⁠​​​​‍​‍​​​⁠‍​​2024 05.27 jqctf 初赛 wp - LaoGong - 飞书云文档 (feishu.cn)
最后经过大佬的指点终于成功了!!剩下的就是算法学习了!

安装环境:

┌──(kali㉿kali)-[~/tools]
└─$ git clone https://github.com/IchildYu/load-elf.git         
正克隆到 'load-elf'...
remote: Enumerating objects: 40, done.
remote: Counting objects: 100% (40/40), done.
remote: Compressing objects: 100% (37/37), done.
remote: Total 40 (delta 18), reused 0 (delta 0), pack-reused 0
接收对象中: 100% (40/40), 13.93 KiB | 6.97 MiB/s, 完成.
处理 delta 中: 100% (18/18), 完成.
┌──(kali㉿kali)-[~/tools/load-elf]
└─$ gcc ./x64_main.c -o lib -g -ldl -masm=intel -shared -fPIC

成功跑出flag,源码在下面:

python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def dump_bin(bin):
    d = []
    pc = 0
    while pc < len(bin):
        op = bin[pc]
        # print('#', pc, op)
        # print('b = func[%d]()' % (op | 0x100))
        type = bin[pc + 1]
        if type == 2 or type == 0:
            # missing bin[pc + 2]
            # print('a = func[%d](%d)' % (op, bin[pc + 3]))
            key = bin[pc + 3]
            pc += 4
        elif type == 1:
            size = bin[pc + 2]
            s = bin[pc + 3: pc + 3 + size]
            # print('a = func[%d](%s)' % (op, repr(s)))
            # print('b = xor(b)')
            key = 0
            for i in s: key ^= i
            pc += 3 + size
        else:
            pc += 3
            assert False
        d.append((op, key))
    return d
 
def g(x, n):
    return (x >> n) & 1
 
def s(x, n):
    return (x & 1) << n
 
def swapbit(x, m, n):
    if m == n: return x
    return s(g(x, m), n) | s(g(x, n), m) | (x & ~(s(1, n) | s(1, m)))
 
def swapkeep(x, mask):
    swapbits = ~mask & 0xff
    m = swapbits.bit_length() - 1
    assert 0 <= m < 8
    swapbits ^= 1 << m
    n = swapbits.bit_length() - 1
    assert 0 <= n < 8
    swapbits ^= 1 << n
    assert swapbits == 0
    return swapbit(x, m, n)
 
def ror1(x, n):
    n &= 7
    if isinstance(x, int):
        x &= 0xff
        return (x >> n) | (x << (8 - n)) & 0xff
    else:
        return LShR(x, n) | (x << (8 - n)) & 0xff
 
entries = [
    0x2efa,
    0x42e9,
    0x3428,
    0x38fd,
    0x2522,
    0x480d,
    0x4cc6,
    0x3df6,
    0x51df
]
 
bin = open('./bin', 'rb').read()
_seq = dump_bin(bin)
# print(_seq)
 
import ctypes
 
lib = ctypes.cdll.LoadLibrary('./lib')
# extern void setup();
lib.setup()
 
def encrypt(array, seq):
    for op, key in seq:
        for i in range(38):
            v = lib.bf_round(key, entries[op], i)
            type, val0, val1 = v >> 16, (v >> 8) & 0xff, v & 0xff
            if type == 0:
                assert val0 == 0
                # print(i, 'c ^= 0x%x' % val1)
                array[i] ^= val1
            elif type == 1:
                # print(i, 'c = ror1(c, %d) ^ 0x%x' % (val0, val1))
                array[i] = ror1(array[i], val0) ^ val1
            elif type == 2:
                # print(i, 'c = swapkeep(c, 0x%x) ^ 0x%x' % (val0, val1))
                array[i] = swapkeep(array[i], val0) ^ val1
            else:
                assert False, type
 
from z3 import *
_array = [BitVec('x%d' % i, 8) for i in range(38)]
array = _array[:]
encrypt(array, _seq)
 
result = [226, 125, 77, 72, 55, 231, 235, 154, 118, 5, 125, 135, 49, 162, 160, 77, 248, 159, 61, 164, 56, 139, 225, 229, 136, 139, 89, 191, 4, 222, 40, 234, 126, 202, 215, 252, 133, 165]
# print(len(result))
 
s = Solver()
for i in range(38):
    s.add(array[i] == result[i])
 
assert s.check() == sat
model = s.model()
# print(model)
flag = []
for i in _array:
    flag.append(model[i].as_long())
 
print(bytes(flag))
# flag{3da8767cfb9424b9bbcc09008e36642d}

lib的源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
#include <stdio.h>
#include <dlfcn.h>
#include <string.h>
#include <assert.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
 
#define ERROR 0
#define WARNING 1
#define INFO 2
#define DEBUG 3
#define VERBOSE 4
 
const char* LOG_LEVEL_CHARS = "EWIDV";
const char* LOG_LEVEL_COLORS[] = {
    "\x1b[31m",
    "\x1b[33m",
    "\x1b[32m",
    "\x1b[0m",
    "\x1b[34m",
};
int _log_level = INFO;
int _log_color = 1;
 
void set_log_level(int log_level) {
    if (log_level < 0) log_level = 0;
    if (log_level > 4) log_level = 4;
    _log_level = log_level;
}
 
void set_log_color(int log_color) {
    _log_color = log_color;
}
 
void Log(int log_level, const char* format, ...) {
    if (log_level < 0) log_level = 0;
    if (log_level > 4) log_level = 4;
    if (log_level > _log_level) return;
    if (_log_color) printf("%s", LOG_LEVEL_COLORS[log_level]);
    printf("[%c] ", LOG_LEVEL_CHARS[log_level]);
    va_list args;
    va_start(args, format);
    vprintf(format, args);
    va_end(args);
    if (_log_color) printf("\x1b[0m");
}
 
#define LOGE(format, ...) Log(ERROR, format, ##__VA_ARGS__)
#define LOGW(format, ...) Log(WARNING, format, ##__VA_ARGS__)
#define LOGI(format, ...) Log(INFO, format, ##__VA_ARGS__)
#define LOGD(format, ...) Log(DEBUG, format, ##__VA_ARGS__)
#define LOGV(format, ...) Log(VERBOSE, format, ##__VA_ARGS__)
 
// default info
#define SET_LOGE() set_log_level(ERROR)
#define SET_LOGW() set_log_level(WARNING)
#define SET_LOGI() set_log_level(INFO)
#define SET_LOGD() set_log_level(DEBUG)
#define SET_LOGV() set_log_level(VERBOSE)
 
// default on
#define SET_LOGCOLOR_OFF() set_log_color(0)
#define SET_LOGCOLOR_ON() set_log_color(1)
 
 
#define R_NONE 0
#define R_COPY 5
#define R_GLOB_DAT 6
#define R_JUMP_SLOT 7
#define R_RELATIVE 8
#define R_IRELATIVE 37
 
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long long ullong;
 
typedef struct {
    uchar e_ident[16];
    ushort e_type;
    ushort e_machine;
    uint e_version;
    size_t e_entry;
    size_t e_phoff;
    size_t e_shoff;
    uint e_flags;
    ushort e_ehsize;
    ushort e_phentsize;
    ushort e_phnum;
    ushort e_shentsize;
    ushort e_shnum;
    ushort e_shtrndx;
} elf_header;
 
typedef struct {
    size_t d_tag;
    size_t d_un;
} elf_dyn;
 
typedef struct {
    size_t r_offset;
    size_t r_info;
} elf_rel;
 
typedef struct {
    size_t r_offset;
    size_t r_info;
    size_t r_addend;
} elf_rela;
 
// elf_sym.st_info
#define elf_st_bind(info) ((info) >> 4)
#define elf_st_type(info) ((info) & 0xf)
 
typedef struct {
    uint p_type;
    uint p_flags;
    size_t p_offset;
    size_t p_vaddr;
    size_t p_paddr;
    size_t p_filesz;
    size_t p_memsz;
    size_t p_align;
} elf_program_header;
 
typedef struct {
    uint st_name;
    uchar st_info;
    uchar st_other;
    ushort shndx;
    size_t st_value;
    size_t st_size;
} elf_sym;
 
// elf_rel[a].r_info
#define elf_r_sym(info) ((info) >> 32)
#define elf_r_type(info) ((uint) (info))
 
int do_reloc(void* base, size_t offset, size_t info, size_t addend, const elf_sym* symtab, const char* strtab) {
    #define sym (elf_r_sym(info))
    #define type (elf_r_type(info))
    #define value (symtab[sym].st_value)
    #define size (symtab[sym].st_size)
    #define name (strtab + symtab[sym].st_name)
    switch (type) {
    case R_NONE:
        break;
    case R_COPY:
        if (value) {
            memcpy((void*) ((size_t) base + offset), (const void*) ((size_t) base + value), size);
        } else {
            const void* sym_value = dlsym((void*) -1, name); // RTLD_DEFAULT
            if (!sym_value) {
                LOGW("failed to resolve symbol `%s'.\n", name);
                break;
            }
            memcpy((void*) ((size_t) base + offset), sym_value, size);
        }
        break;
    case R_GLOB_DAT:
    case R_JUMP_SLOT:
        if (value) {
            *(size_t*) ((size_t) base + offset) = (size_t) base + value;
        } else {
            const void* sym_value = dlsym((void*) -1, name); // RTLD_DEFAULT
            if (!sym_value) {
                LOGW("failed to resolve symbol `%s'.\n", name);
                break;
            }
            *(size_t*) ((size_t) base + offset) = (size_t) sym_value;
        }
        break;
    case R_RELATIVE:
        *(size_t*) ((size_t) base + offset) = (size_t) base + addend;
        break;
    case R_IRELATIVE:
        *(size_t*) ((size_t) base + offset) = ((size_t (*)()) ((size_t) base + addend))();
        break;
    case 1: // R_X86_64_64
        if (value) {
            *(size_t*) ((size_t) base + offset) = (size_t) base + value + addend;
        } else {
            const void* sym_value = dlsym((void*) -1, name); // RTLD_DEFAULT
            if (!sym_value) {
                LOGW("failed to resolve symbol `%s'.\n", name);
                break;
            }
            *(size_t*) ((size_t) base + offset) = (size_t) sym_value + addend;
        }
        break;
    default:
        LOGW("unimplemented reloc type: %d.\n", type);
        break;
    }
    #undef sym
    #undef type
    #undef value
    #undef size
    #undef name
    return 1;
}
 
 
#define SKIP_LOAD_WITH_DL
 
void* load_with_dl(const char* path) {
    #ifdef SKIP_LOAD_WITH_DL
        LOGD("SKIP_LOAD_WITH_DL defined, load_with_dl returns NULL.\n");
        return NULL;
    #endif
    LOGI("loading %s with dlopen...\n", path);
    void* handle = dlopen(path, RTLD_LAZY);
    if (handle == NULL) {
        LOGE("load_with_dl failed: %s.\n", dlerror());
        return NULL;
    }
    void* base = *(void**) handle;
    LOGI("done, loaded at %p.\n", base);
    return base;
}
 
int check_header(elf_header* header) {
    if (*(uint*) header->e_ident != 0x464c457f) {
        LOGE("elf magic header not detected.\n");
        return 0;
    }
    if (header->e_ident[4] != (sizeof(void*) / 4)) { // ei_class, 1: ELFCLASS32, 2: ELFCLASS64
        LOGE("elf class mismatch.\n");
        return 0;
    }
    if (header->e_ident[5] != 1) {
        LOGE("LSB expected.\n");
        return 0;
    }
    if (header->e_type != 2 && header->e_type != 3) {
        LOGE("Dynamic library or executable expected.\n");
        return 0;
    }
    if (header->e_ehsize != sizeof(elf_header)) {
        LOGE("Unexpected header size.\n");
        return 0;
    }
    return 1;
}
 
const elf_dyn* find_dyn_entry(const elf_dyn* dyn, int type) {
    for (; dyn->d_tag != 0; dyn++) { // DT_NULL
        if (dyn->d_tag == type) return dyn;
    }
    return NULL;
}
 
int do_rel(void* base, const elf_rel* rel, int count, const elf_sym* symtab, const char* strtab) {
    for (int i = 0; i < count; i++) {
        if (!do_reloc(base, rel[i].r_offset, rel[i].r_info, *(size_t*) ((size_t) base + rel[i].r_offset), symtab, strtab))
            return 0;
    }
    return 1;
}
 
int do_rela(void* base, const elf_rela* rela, int count, const elf_sym* symtab, const char* strtab) {
    for (int i = 0; i < count; i++) {
        if (!do_reloc(base, rela[i].r_offset, rela[i].r_info, rela[i].r_addend, symtab, strtab))
            return 0;
    }
    return 1;
}
 
int check_and_do_rel(void* base, const elf_dyn* dyn, const elf_rel* rel, const elf_sym* symtab, const char* strtab) {
    if (find_dyn_entry(dyn, 0x13)->d_un != sizeof(elf_rel)) { // DT_RELENT
        LOGE("unexpected rel table entry size.\n");
        return 0;
    }
    LOGD("do rel.\n");
    int rel_count = find_dyn_entry(dyn, 0x12)->d_un / sizeof(elf_rel); // DT_RELSZ
    if (!do_rel(base, rel, rel_count, symtab, strtab)) return 0;
    return 1;
}
 
int check_and_do_rela(void* base, const elf_dyn* dyn, const elf_rela* rela, const elf_sym* symtab, const char* strtab) {
    if (find_dyn_entry(dyn, 0x9)->d_un != sizeof(elf_rela)) { // DT_RELAENT
        LOGE("unexpected rela table entry size.\n");
        return 0;
    }
    LOGD("do rela.\n");
    int rela_count = find_dyn_entry(dyn, 0x8)->d_un / sizeof(elf_rela); // DT_RELASZ
    if (!do_rela(base, rela, rela_count, symtab, strtab)) return 0;
    return 1;
}
 
int load_dynamic(void* base, const elf_dyn* dyn) {
    const elf_dyn* res = find_dyn_entry(dyn, 5); // DT_STRTAB
    if (res == NULL) {
        LOGE("string table not found.\n");
        return 0;
    }
    const char* strtab = (const char*) ((size_t) base + res->d_un);
 
    const elf_sym* symtab = NULL;
    res = find_dyn_entry(dyn, 0x6); // DT_SYMTAB
    if (res != NULL) {
        symtab = (const elf_sym*) ((size_t) base + res->d_un);
        if (find_dyn_entry(dyn, 0xB)->d_un != sizeof(elf_sym)) { // DT_SYMENT
            LOGE("unexpected symbol table entry size.\n");
            return 0;
        }
    }
 
    for (const elf_dyn* it = dyn; it->d_tag != 0; it++) {
        if (it->d_tag != 1) continue; // DT_NEEDED: name of needed library
        LOGD("loading needed library `%s'.\n", strtab + it->d_un);
        if (!dlopen(strtab + it->d_un, RTLD_NOW | RTLD_GLOBAL))
            LOGW("failed to load needed library `%s': %s.\n", strtab + it->d_un, dlerror());
    }
 
    int rel_done = 0;
    for (const elf_dyn* it = dyn; it->d_tag != 0; it++) { // DT_NULL
        switch (it->d_tag) {
        case 7: // DT_RELA
            if (rel_done) break;
            if (!check_and_do_rela(base, dyn, (const elf_rela*) ((size_t) base + it->d_un), symtab, strtab))
                return 0;
            rel_done = 1;
            break;
        case 0x11: // DT_REL
            if (rel_done) break;
            if (!check_and_do_rel(base, dyn, (const elf_rel*) ((size_t) base + it->d_un), symtab, strtab))
                return 0;
            rel_done = 1;
            break;
        case 0x17: // DT_JMPREL
            ;
            size_t plt_rel_size = find_dyn_entry(dyn, 0x2)->d_un; // DT_PLTRELSZ
            int plt_rel = find_dyn_entry(dyn, 0x14)->d_un; // DT_PLTREL
            if (plt_rel == 0x11) { // DT_REL
                if (!rel_done) {
                    res = find_dyn_entry(dyn, 0x11); // DT_REL
                    if (res != NULL) {
                        if (!check_and_do_rel(base, dyn, (const elf_rel*) ((size_t) base + res->d_un), symtab, strtab))
                            return 0;
                        rel_done = 1;
                    }
                }
                plt_rel_size /= sizeof(elf_rel);
                LOGD("do jmprel with rel.\n");
                if (!do_rel(base, (elf_rel*) ((size_t) base + it->d_un), plt_rel_size, symtab, strtab)) return 0;
            } else if (plt_rel == 7) { // DT_RELA
                if (!rel_done) {
                    res = find_dyn_entry(dyn, 7); // DT_RELA
                    if (res != NULL) {
                        if (!check_and_do_rela(base, dyn, (const elf_rela*) ((size_t) base + res->d_un), symtab, strtab))
                            return 0;
                        rel_done = 1;
                    }
                }
                plt_rel_size /= sizeof(elf_rela);
                LOGD("do jmprel with rela.\n");
                if (!do_rela(base, (elf_rela*) ((size_t) base + it->d_un), plt_rel_size, symtab, strtab)) return 0;
            } else {
                LOGE("unexpected plt rel type: %d.\n", plt_rel);
                return 0;
            }
            break;
        }
    }
 
    res = find_dyn_entry(dyn, 0xC); // DT_INIT
    if (res != NULL) {
        void (*init)() = (void (*)()) ((size_t) base + res->d_un);
        LOGI("init proc detected: %p.\n", init);
        int choice = 'y';
        do {
            LOGI("Execute init proc? [(y)es/(n)o] ");
            choice = getchar();
            if (choice != '\n') while (getchar() != '\n') ;
            if (choice >= 'A' && choice <= 'Z') choice += 0x20;
        } while (choice != 'y' && choice != 'n');
        if (choice == 'y') init();
    }
 
    res = find_dyn_entry(dyn, 0x19); // DT_INIT_ARRAY
    if (res != NULL) {
        void (**init_array)() = (void (**)()) ((size_t) base + res->d_un);
        int count = find_dyn_entry(dyn, 0x1B)->d_un / sizeof(size_t); // DT_INIT_ARRAYSZ
        while (*init_array == NULL && count) {
            init_array++;
            count--;
        }
        if (count) {
            LOGI("init array detected:\n");
            int choice = '?';
            for (int i = 0; i < count; i++) {
                if (!init_array[i]) continue;
                while (choice != 'y' && choice != 'n' && choice != 'a' && choice != 'o') {
                    LOGI("\texecute function %p? [(y)es/(n)o/(a)ll items left/n(o)ne items left] ", init_array[i]);
                    choice = getchar();
                    if (choice != '\n') while (getchar() != '\n') ; // skip line
                    if (choice >= 'A' && choice <= 'Z') choice += 0x20; // convert to lower case
                }
                if ((uchar) (choice - 'n') > 2) { // 'y' or 'a'
                    LOGI("\texecuting function at %p...\n", init_array[i]);
                    init_array[i]();
                    if (choice == 'y') choice = '?';
                } else if (choice == 'n') choice = '?';
            }
        }
    }
 
    res = find_dyn_entry(dyn, 0xD); // DT_FINI
    if (res != NULL) {
        void (*fini)() = (void (*)()) ((size_t) base + res->d_un);
        LOGI("fini proc detected: %p.\n", fini);
    }
 
    res = find_dyn_entry(dyn, 0x1A); // DT_FINI_ARRAY
    if (res != NULL) {
        void (**fini_array)() = (void (**)()) ((size_t) base + res->d_un);
        int count = find_dyn_entry(dyn, 0x1C)->d_un / sizeof(size_t); // DT_FINI_ARRAYSZ
        while (*fini_array == NULL && count) {
            fini_array++;
            count--;
        }
        if (count) {
            LOGI("fini array detected:\n");
            for (int i = 0; i < count; i++) {
                if (fini_array[i]) {
                    LOGI("\t%p\n", fini_array[i]);
                }
            }
        }
    }
    LOGI("load_dynamic done.\n");
    return 1;
}
 
#define MMAP_LOAD_BASE ((void*) 0xC0000000)
void* load_with_mmap(const char* path) {
    LOGI("loading %s with mmap...\n", path);
    int fd = open(path, O_RDONLY);
    LOGV("open(path, O_RDONLY) returns %d\n", fd);
 
    elf_header header;
    LOGV("reading elf header from file...\n");
    if (read(fd, &header, sizeof(header)) != sizeof(header)) {
        LOGE("read header error\n");
        close(fd);
        return NULL;
    }
    LOGV("checking elf header...\n");
    if (!check_header(&header)) {
        close(fd);
        return NULL;
    }
 
    elf_program_header pheader;
    elf_dyn* dyn = NULL;
 
    int e_phentsize = header.e_phentsize;
    int e_phnum = header.e_phnum;
 
    if (e_phentsize != sizeof(pheader)) {
        LOGE("unexpected program header size.\n");
        close(fd);
        return NULL;
    }
 
    LOGV("determine LOAD_BASE...\n");
    void* base = MMAP_LOAD_BASE;
    while (base != mmap(base, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)) {
        base = (void*) ((size_t) base + 0x1000000);
    }
    munmap(base, 0x1000);
    LOGD("trying loading at %p\n", base);
 
    lseek(fd, header.e_phoff, SEEK_SET);
    for (int i = 0; i < e_phnum; i++) {
        LOGV("processing phdr %d...\n", i);
        if (read(fd, &pheader, sizeof(pheader)) != sizeof(pheader)) {
            LOGE("read pheader error\n");
            close(fd);
            return NULL;
        }
        if (pheader.p_type != 1 || pheader.p_memsz == 0) { // not PT_LOAD or nothing to load
            if (pheader.p_type == 2) { // DYNAMIC
                if (dyn != NULL) {
                    LOGE("duplicated DYNAMIC PHT detected.\n");
                    close(fd);
                    return NULL;
                } else {
                    dyn = (elf_dyn*) ((size_t) base + pheader.p_vaddr);
                }
            }
            continue;
        }
        void* addr = (void*) (((size_t) base + pheader.p_vaddr) & ~0xfff);
        int offset = pheader.p_vaddr & 0xfff;
        size_t size = (offset + pheader.p_filesz + 0xfff) & ~0xfff;
        if (addr != mmap(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, pheader.p_offset - offset)) {
        // if (addr != mmap(addr, pheader.p_memsz + offset, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, pheader.p_offset - offset)) {
        // if ((uchar*) addr != (uchar*) base + pheader.p_vaddr) {
            LOGE("failed to mmap 0x%lx to 0x%lx.\n", pheader.p_offset, pheader.p_vaddr + (size_t) base);
            close(fd);
            return NULL;
        }
        if (offset) {
            memset(addr, 0, offset);
        }
        if (pheader.p_memsz != pheader.p_filesz) {
            if (pheader.p_memsz < pheader.p_filesz) {
                LOGE("unexpected: filesz bigger than memsz.\n");
                close(fd);
                return NULL;
            }
            if (pheader.p_memsz + offset > size) {
                LOGV("mmap extra pages in memory\n");
                addr = (void*) ((size_t) addr + size);
                if (addr != mmap(addr, pheader.p_memsz + offset - size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_ANON | MAP_SHARED, -1, 0)) {
                    LOGE("failed to mmap 0x%lx to 0x%lx.\n", pheader.p_offset, pheader.p_vaddr + (size_t) base);
                    close(fd);
                    return NULL;
                }
            }
        }
 
        {
            LOGV("testing memory...\n");
            char c = *(unsigned char*) (pheader.p_vaddr + (size_t) base);
            c = *(unsigned char*) (pheader.p_vaddr + (size_t) base + pheader.p_filesz - 1);
            c = *(unsigned char*) (pheader.p_vaddr + (size_t) base + pheader.p_memsz - 1);
        }
        LOGD("mmaped 0x%lx to 0x%lx, filesz 0x%lx, memsz 0x%lx\n", pheader.p_offset, pheader.p_vaddr + (size_t) base, pheader.p_filesz, pheader.p_memsz);
    }
    LOGI("done, loaded at %p\n", base);
    close(fd);
 
    if (!dyn) return base;
 
    LOGI("DYNAMIC detected, loading...\n");
    if (!load_dynamic(base, dyn)) return NULL;
    return base;
}
 
const elf_dyn* get_dyn(void* base) {
    elf_header* header = (elf_header*) base;
    int e_phnum = header->e_phnum;
    elf_program_header* pheader = (elf_program_header*) ((size_t) base + header->e_phoff);
    for (int i = 0; i < e_phnum; i++, pheader++) {
        if (pheader->p_type == 2) {
            return (elf_dyn*) ((size_t) base + pheader->p_vaddr);
        }
    }
}
 
void* get_symbol_by_name(void* base, const char* symbol) {
    const elf_dyn* dyn = get_dyn(base);
    const char* strtab = (const char*) (find_dyn_entry(dyn, 5)->d_un); // DT_STRTAB
 
    if (strtab < (const char*) base)
        strtab = (const char*) strtab + (size_t) base;
    size_t strsz = find_dyn_entry(dyn, 0xa)->d_un; // DT_STRSZ
    const elf_sym* symtab = (const elf_sym*) (find_dyn_entry(dyn, 6)->d_un); // DT_SYMTAB
    if ((const char*) symtab < (const char*) base)
        symtab = (const elf_sym*) ((const char*) symtab + (size_t) base);
 
    for (; ; symtab++) {
        if (symtab->st_name == 0) continue;
        if (symtab->st_name >= strsz) {
            LOGE("failed to resolve symbol `%s' from library (%p): not found.\n", symbol, base);
            return NULL;
        }
        if (strcmp(strtab + symtab->st_name, symbol) == 0) {
            if (symtab->st_value == 0) {
                LOGE("failed to resolve symbol `%s' from library (%p): value is NULL.\n", symbol, base);
                return NULL;
            }
            if (elf_st_type(symtab->st_info) != 10) { // STT_GNU_IFUNC
                return (void*) ((size_t) base + symtab->st_value);
            }
            return ((void* (*)()) ((size_t) base + symtab->st_value))();
        }
    }
}
 
void* get_symbol_by_offset(void* base, size_t offset) {
    return (void*) ((size_t) base + offset);
}
 
void* load_elf(const char* elf_path) {
    void* base = load_with_dl(elf_path);
    if (base == NULL) {
        base = load_with_mmap(elf_path);
    }
    //assert(base != NULL && *(unsigned int*) base == 0x464c457f);
    return base;
}
 
 
// gcc ./x64_main.c -o main -g -ldl
__asm__(
    "__round:\n"
    "sub rsp, 0x10\n"
    "mov [rsp+0x8], rdi\n"
    "mov r12, rsi\n"
    "call rdx\n"
    "add rsp, 0x10\n"
    "ret\n"
);
 
void __round(unsigned char* array, int key, void* entry);
 
extern int bf_round(int key, int offset, int index);
extern void setup();
extern void one_round(unsigned char* array, int key, int offset);
 
static char* base;
 
void setup() {
    // SET_LOGE();
    const char* path = "./libentry.so";
    base = load_elf(path);
    *(base + 0x2a07) = 0xc3; // ret
}
 
void one_round(unsigned char* array, int key, int offset) {
    if (base == NULL) setup();
    __round(array, key, base + offset);
}
 
unsigned char g(unsigned char x, unsigned char n) {
    return (x >> n) & 1;
}
 
unsigned char s(unsigned char x, unsigned char n) {
    return (x & 1) << n;
}
 
unsigned char swapbit(unsigned char x, unsigned char m, unsigned char n) {
    if (m == n) return x;
    return s(g(x, m), n) | s(g(x, n), m) | (x & ~(s(1, n) | s(1, m)));
}
 
unsigned char bit_length(unsigned char x) {
    if (x == 0) return 0;
    for (int i = 8; i > 0; i--) {
        if (x & (1 << (i - 1))) return i;
    }
}
 
unsigned char swapkeep(unsigned char x, unsigned char mask) {
    unsigned char swapbits = ~mask & 0xff;
    unsigned char m = bit_length(swapbits) - 1;
    assert(0 <= m && m < 7);
    swapbits ^= 1 << m;
    unsigned char n = bit_length(swapbits) - 1;
    assert(0 <= n && n < 7);
    swapbits ^= 1 << n;
    assert(swapbits == 0);
    return swapbit(x, m, n);
}
 
unsigned char ror1(unsigned char x, unsigned char n) {
    n &= 7;
    x &= 0xff;
    return (x >> n) | (x << (8 - n)) & 0xff;
}
 
unsigned char rol1(unsigned char x, unsigned char n) {
    return ror1(x, 8 - n);
}
 
#define XOR 0 // c ^ val0 ^ val1
#define ROT 1 // ror1(c, val0) ^ val1
#define SWP 2 // swapkeep(c, val0) ^ val1
#define MAKE_RET_VAL(type, val0, val1) (((type) << 16) | ((val0) << 8) | (val1))
 
int bf_round(int key, int offset, int index) {
    if (base == NULL) setup();
    unsigned char array[38];
    array[index] = 0;
    __round(array, key, base + offset);
    unsigned char val1 = array[index];
 
    int flag = 0;
    // test xor
    for (int i = 0; i < 7; i++) {
        array[index] = 1 << i;
        __round(array, key, base + offset);
        array[index] ^= val1;
        if (array[index] != (1 << i)) {
            flag = 1;
            break;
        }
    }
    if (flag == 0) { // XOR
        return MAKE_RET_VAL(XOR, 0, val1);
    }
 
    // test rol1
    array[index] = 1;
    __round(array, key, base + offset);
    array[index] ^= val1;
    unsigned char val0 = bit_length(array[index]);
    assert(val0 != 0);
    val0--;
    if (val0 != 0) {
        assert(array[index] == (1 << val0));
        for (int i = 1; i < 7; i++) {
            array[index] = 1 << i;
            __round(array, key, base + offset);
            array[index] ^= val1;
            if (array[index] != (1 << ((i + val0) % 8))) {
                flag = 0;
                break;
            }
        }
        if (flag == 1) {
            return MAKE_RET_VAL(ROT, 8 - val0, val1);
        }
    }
 
    // swapkeep
    for (int i = 0; i < 7; i++) {
        array[index] = 1 << i;
        __round(array, key, base + offset);
        array[index] ^= val1;
        if (array[index] != (1 << i)) {
            assert(bit_length(array[index]));
            assert(array[index] == (1 << (bit_length(array[index]) - 1)));
            val0 = ~((1 << i) | array[index]);
            return MAKE_RET_VAL(SWP, val0, val1);
        }
    }
    assert(0);
}
 
// gcc ./x64_main.c -o lib -g -ldl -masm=intel -shared
int main() {
    {
        const char* path = "/lib/x86_64-linux-gnu/libm.so.6";
        void* base = load_elf(path);
 
        double (*pow)(double, double) = get_symbol_by_name(base, "pow");
        double a = 3.14159;
        double b = a;
        printf("%g ** %g == %g\n", a, b, pow(a, b));
    }
    /**/
 
    const char* path = "/lib/x86_64-linux-gnu/libc++.so.1";
    void* base = load_elf(path);
    void* std_cout = get_symbol_by_name(base, "_ZNSt3__14coutE");
    // offset may be different
    // std::ostream::operator<<(int)
    void* (*print_int)(void*, int) = get_symbol_by_offset(base, 0x5e380);
    // std::ostream::put(char)
    void* (*print_char)(void*, char) = get_symbol_by_offset(base, 0x5f510);
    print_char(print_int(std_cout, 114514), '\n');
    /**/
 
    puts("done.");
    return 0;
}

最终报错:

解决方案:
arm架构下的伪代码可以发现数据对比!

发现一个ida小技巧:
点击Collapse declarations可以把超长的变量声明缩减成一行!


[培训]内核驱动高级班,冲击BAT一流互联网大厂工作,每周日13:00-18:00直播授课

最后于 2024-6-5 13:48 被Loserme编辑 ,原因:
上传的附件:
收藏
免费 3
打赏
分享
最新回复 (3)
雪    币: 10
能力值: ( LV1,RANK:0 )
在线值:
发帖
回帖
粉丝
mb_ldbucrik 2024-6-5 09:52
2
0
楼主,最后的ida小技巧是不是忘记编写了呢
雪    币: 639
活跃值: (308)
能力值: ( LV3,RANK:30 )
在线值:
发帖
回帖
粉丝
Loserme 2024-6-5 11:23
3
0
mb_ldbucrik 楼主,最后的ida小技巧是不是忘记编写了呢
忘记说明了:点击Collapse declarations可以把IDA超长的变量声明缩减成一行!
雪    币:
能力值: ( LV1,RANK:0 )
在线值:
发帖
回帖
粉丝
海带 2024-7-8 14:39
4
0
学到了
游客
登录 | 注册 方可回帖
返回