经常看到各位大佬挥毫泼墨,就算法和密码问题各抒己见,小弟今天斗胆也来上一课。
关于RSA的数学原理和实现,本文根据数论中的知识给出了证明,然后是自己手撸的64位RSA算法。
1.基础知识
辗转相除法:
若a=bx+c,则(a,b)=(b,c)
证明略。
欧拉函数:
ϕ(n)=n∗(1−1/p)(1−1/q)=(p−1)∗(q−1)
证明自行百度。
2. RSA加解密的条件
3. 加解密过程
加密:c=E(m)=mwmodn
解密:m=D(c)=cdmodn
4. 证明过程:
(mwmodn)dmodn=mwdmodn[证明:假设mw=an+b,则(mwmodn)dmodn=bdmodn而mwdmodn=(an+b)dmodn=(an)n+Cdn−1(an)n−1b+...+bdmodn=bdmodn]
所以,要证明加解密过程的正确性,即证明:
mwdmodn=m
因为:
wd≡1(modϕ(n))
所以
wd=Aϕ(n)+1
(1). 若m与n互素
根据欧拉定理可得:
mϕ(n)≡1(modn)mkϕ(n)+1≡m(modn)
(2). 若m与n不互素
因为m是合数,n=pq, 根据算数基本定理,m必包含p或者q,假设m包含q,则根据fermat定理可得,
mp−1≡1(modp)
等式得证。
屈婉玲等几位老师的《离散数学》证明如下:
代码是自己根据数学公式一行一行写的,因为对照公式可以很容易识别各个函数的用途,所以没写注释,请大家见谅。
只是为了学习验证,可能有所缺陷,敬请批评指正。
c++文件:
头文件:
调用方式是在main函数中执行那个如下代码,main函数就先省略了:)
1.pow_i函数中为什么要取余数?为了防止溢出?数学知识不扎实。
2.加密之前与解密之后的bit位数应该长度相同,加密之后的bit数与解密之前的bit位长度应该相同。
myInt64 g_n
=
0
;
myInt64 g_d
=
0
;
myInt64 g_w
=
0
;
int
g_blocksize
=
0
;
int
g_blocksize_src
=
1
;
myInt64 pow_i_old(myInt64 a, myInt64 b, myInt64 p) {
myInt64 res
=
1
;
for
(myInt64 i
=
0
; i < b; i
+
+
)
{
res
=
(res
*
a)
%
p;
if
(res
=
=
0
)
/
/
caution here: avert to overlow
{
break
;
}
}
return
res;
}
myInt64 pow_i(myInt64 x, myInt64 n, myInt64 p)
{
if
(n
=
=
0
)
{
return
1
;
}
myInt64 temp
=
pow_i((x
*
x)
%
p, n
/
2
, p);
/
/
递归计算(X
*
X)^[N
/
2
]
if
((n &
1
) !
=
0
)
/
/
判断n的奇偶性
{
temp
=
(temp
*
x)
%
p;
}
return
temp;
}
myInt64 pow_ii(myInt64 a, myInt64 b, myInt64 g_n) {
myInt64 res
=
1
;
for
(myInt64 i
=
0
; i < b; i
+
+
)
{
res
=
(res
*
a)
%
g_n;
if
(res
=
=
0
)
/
/
caution here: avert to overlow
{
/
/
break
;
}
}
return
res;
}
int
isMutualPrime(myInt64 n, myInt64 m) {
return
1
;
}
int
isPrimeNumber(myInt64 n) {
for
(myInt64 i
=
2
; i < n; i
+
+
)
{
myInt64 quotient
=
n
%
i;
if
(quotient
=
=
0
)
{
return
FALSE;
}
}
return
TRUE;
}
int
rsaInit(myInt64 p, myInt64 q)
{
if
(p
=
=
q || p <
=
2
|| q <
=
2
|| isPrimeNumber(p)
=
=
0
|| isPrimeNumber(q)
=
=
0
)
{
return
FALSE;
}
g_n
=
p
*
q;
if
(g_n <
128
)
{
return
FALSE;
}
myInt64 mi64
=
0x8000000000000000
;
int
bh
=
63
;
for
(
int
i
=
63
; i >
=
0
; i
-
-
)
{
if
(g_n & mi64)
{
bh
=
i;
break
;
}
mi64
=
mi64 >>
1
;
}
if
(bh >
=
32
)
{
g_blocksize
=
8
;
}
else
if
(bh >
=
16
)
{
g_blocksize
=
4
;
}
else
if
(bh >
=
8
)
{
g_blocksize
=
2
;
}
else
{
g_blocksize
=
1
;
}
myInt64 fai_n
=
(p
-
1
)
*
(q
-
1
);
myInt64 w
=
2
;
myInt64 d
=
2
;
for
(w
=
2
; w < fai_n; w
+
+
)
{
int
result
=
isPrimeNumber(w);
if
(result)
{
for
(d
=
2
; d < fai_n; d
+
+
)
{
result
=
isPrimeNumber(w);
if
(result) {
myInt64 m
=
w
*
d;
if
((d !
=
w) && (m
%
fai_n
=
=
1
))
{
g_d
=
d;
g_w
=
w;
return
TRUE;
}
}
}
}
}
return
FALSE;
}
/
/
g_w
is
used to encrypt
and
g_d used to decrypt,
and
g_w must be primer to fai(n)
int
rsa_encrypt(char
*
data,
int
size, char
*
dst) {
if
(g_n
=
=
0
|| g_w
=
=
0
|| g_d
=
=
0
)
{
return
FALSE;
}
int
block_cnt
=
size
/
g_blocksize_src;
int
mod
=
size
%
g_blocksize_src;
unsigned char
*
s
=
(unsigned char
*
)data;
myInt64
*
d
=
(myInt64
*
)dst;
for
(
int
i
=
block_cnt; i >
0
; i
-
-
)
{
myInt64 tmp
=
0
;
if
(g_blocksize
=
=
8
)
{
tmp
=
*
s;
tmp
=
(tmp &
0xffffffffffffffff
);
tmp
=
(pow_i_old(tmp, g_w, g_n));
*
d
=
tmp;
}
else
if
(g_blocksize
=
=
4
)
{
tmp
=
*
s;
tmp
=
tmp &
0xffffffff
;
tmp
=
(pow_i_old(tmp, g_w, g_n));
*
(DWORD
*
)d
=
*
(DWORD
*
)&tmp;
}
else
if
(g_blocksize
=
=
2
)
{
tmp
=
*
s;
tmp
=
tmp &
0xffff
;
tmp
=
(pow_i_old(tmp, g_w, g_n));
*
(WORD
*
)d
=
*
(WORD
*
)&tmp;
}
else
if
(g_blocksize
=
=
1
)
{
tmp
=
*
(unsigned char
*
)s;
tmp
=
(tmp &
0xff
);
tmp
=
(pow_i_old(tmp, g_w, g_n));
*
(unsigned char
*
)d
=
*
(unsigned char
*
)&tmp;
}
s
=
(unsigned char
*
)((unsigned char
*
)s
+
g_blocksize_src);
d
=
(myInt64
*
)((unsigned char
*
)d
+
g_blocksize);
}
if
(mod)
{
myInt64 tmp
=
0
;
memcpy(&tmp, s, mod);
if
(g_blocksize_src
=
=
8
)
{
tmp
=
tmp &
0xffffffffffffffff
;
}
else
if
(g_blocksize_src
=
=
4
)
{
tmp
=
tmp &
0xffffffff
;
}
else
if
(g_blocksize_src
=
=
2
)
{
tmp
=
tmp &
0xffff
;
}
else
if
(g_blocksize_src
=
=
1
)
{
tmp
=
tmp &
0xff
;
}
tmp
=
pow_i_old(tmp, g_w, g_n);
memcpy(d, &tmp, mod);
}
return
size;
}
int
rsa_decrypt(char
*
data,
int
size, char
*
dst) {
if
(g_n
=
=
0
|| g_w
=
=
0
|| g_d
=
=
0
)
{
return
FALSE;
}
int
block_cnt
=
size
/
g_blocksize_src;
int
mod
=
size
%
g_blocksize_src;
myInt64
*
s
=
(myInt64
*
)data;
unsigned char
*
d
=
(unsigned char
*
)dst;
for
(
int
i
=
block_cnt; i >
0
; i
-
-
)
{
myInt64 tmp
=
0
;
if
(g_blocksize
=
=
8
)
{
tmp
=
*
s;
tmp
=
(tmp &
0xffffffffffffffff
);
tmp
=
(pow_i_old(tmp, g_d, g_n));
*
d
=
(unsigned char)tmp;
}
else
if
(g_blocksize
=
=
4
)
{
tmp
=
*
(DWORD
*
)s;
tmp
=
tmp &
0xffffffff
;
tmp
=
(pow_i_old(tmp, g_d, g_n));
*
d
=
(unsigned char)tmp;
}
else
if
(g_blocksize
=
=
2
)
{
tmp
=
*
(WORD
*
)s;
tmp
=
tmp &
0xffff
;
tmp
=
(pow_i_old(tmp, g_d, g_n));
*
d
=
(unsigned char)tmp;
}
else
if
(g_blocksize
=
=
1
)
{
tmp
=
*
(unsigned char
*
)s;
tmp
=
(tmp &
0xff
);
tmp
=
(pow_i_old(tmp, g_d, g_n));
*
d
=
(unsigned char)tmp;
}
s
=
(myInt64
*
)((unsigned char
*
)s
+
g_blocksize);
d
=
(unsigned char
*
)((unsigned char
*
)d
+
g_blocksize_src);
}
if
(mod)
{
myInt64 tmp
=
0
;
memcpy(&tmp, s, mod);
if
(g_blocksize
=
=
8
)
{
tmp
=
tmp &
0xffffffffffffffff
;
}
else
if
(g_blocksize
=
=
4
)
{
tmp
=
tmp &
0xffffffff
;
}
else
if
(g_blocksize
=
=
2
)
{
tmp
=
tmp &
0xffff
;
}
else
if
(g_blocksize
=
=
1
)
{
tmp
=
tmp &
0xff
;
}
tmp
=
pow_i_old(tmp, g_d, g_n);
memcpy(d, &tmp, mod);
}
return
size;
}
myInt64 g_n
=
0
;
myInt64 g_d
=
0
;
myInt64 g_w
=
0
;
int
g_blocksize
=
0
;
int
g_blocksize_src
=
1
;
myInt64 pow_i_old(myInt64 a, myInt64 b, myInt64 p) {
myInt64 res
=
1
;
for
(myInt64 i
=
0
; i < b; i
+
+
)
{
res
=
(res
*
a)
%
p;
if
(res
=
=
0
)
/
/
caution here: avert to overlow
{
break
;
}
}
return
res;
}
myInt64 pow_i(myInt64 x, myInt64 n, myInt64 p)
{
if
(n
=
=
0
)
{
return
1
;
}
myInt64 temp
=
pow_i((x
*
x)
%
p, n
/
2
, p);
/
/
递归计算(X
*
X)^[N
/
2
]
if
((n &
1
) !
=
0
)
/
/
判断n的奇偶性
{
temp
=
(temp
*
x)
%
p;
}
return
temp;
}
myInt64 pow_ii(myInt64 a, myInt64 b, myInt64 g_n) {
myInt64 res
=
1
;
for
(myInt64 i
=
0
; i < b; i
+
+
)
{
res
=
(res
*
a)
%
g_n;
if
(res
=
=
0
)
/
/
caution here: avert to overlow
{
/
/
break
;
}
}
return
res;
}
int
isMutualPrime(myInt64 n, myInt64 m) {
return
1
;
}
int
isPrimeNumber(myInt64 n) {
for
(myInt64 i
=
2
; i < n; i
+
+
)
{
myInt64 quotient
=
n
%
i;
if
(quotient
=
=
0
)
{
return
FALSE;
}
}
return
TRUE;
}
int
rsaInit(myInt64 p, myInt64 q)
{
if
(p
=
=
q || p <
=
2
|| q <
=
2
|| isPrimeNumber(p)
=
=
0
|| isPrimeNumber(q)
=
=
0
)
{
return
FALSE;
}
g_n
=
p
*
q;
if
(g_n <
128
)
{
return
FALSE;
}
myInt64 mi64
=
0x8000000000000000
;
int
bh
=
63
;
for
(
int
i
=
63
; i >
=
0
; i
-
-
)
{
if
(g_n & mi64)
{
bh
=
i;
break
;
}
mi64
=
mi64 >>
1
;
}
if
(bh >
=
32
)
{
g_blocksize
=
8
;
}
else
if
(bh >
=
16
)
{
g_blocksize
=
4
;
}
else
if
(bh >
=
8
)
{
g_blocksize
=
2
;
}
else
{
g_blocksize
=
1
;
}
myInt64 fai_n
=
(p
-
1
)
*
(q
-
1
);
myInt64 w
=
2
;
myInt64 d
=
2
;
for
(w
=
2
; w < fai_n; w
+
+
)
{
int
result
=
isPrimeNumber(w);
if
(result)
{
for
(d
=
2
; d < fai_n; d
+
+
)
{
result
=
isPrimeNumber(w);
if
(result) {
myInt64 m
=
w
*
d;
if
((d !
=
w) && (m
%
fai_n
=
=
1
))
{
g_d
=
d;
g_w
=
w;
return
TRUE;
}
}
}
}
}
[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!
最后于 2024-2-2 09:59
被satadrover编辑
,原因: