下载地址
先在cmd执行nvidia-smi
,查看驱动版本,下载对应的cuda版本
下载地址
安装的时候选择默认路劲,安装完成在cmd执行nvcc -V
,能查到cuda版本证明安装成功
下载跟cuda版本对应的cdDNN版本
解压后,把三个文件夹直接复制到cuda的安装目录
创建python虚拟环境
激活虚拟环境
生成.condarc
文件
配置源,把下面内容复制进去,保存
下载地址
选择对应cuda版本的PyTorch安装命令
测试是否安装成功
下载yolov5
安装依赖包,先删掉这两行,因为PyTorch我们已经安装过了
然后安装
下载yolov5s.pt
,放到根目录
运行命令
测试结果会保存在run目录下面
安装lableImg
labelImg常用快捷键
新建images和labels文件夹,把准备好的游戏截图放到images目录下,然后用labelimg开始标注(怎么标注,自己百度),总共标注5个类(hero,door,moster,money,boss)。
主要修改train的图片位置、类的个数和类的名字
只要修改nc的数量就可以
cache用disk或者ram都可以
如果内存不够,把work数再改小点
train完成后会在run/exp1/weights目录下会生产一个best.pt文件,用它来detect
经过yolov5训练后,最终识别准备率能达到0.9以上。
https:
/
/
repo.anaconda.com
/
archive
/
https:
/
/
repo.anaconda.com
/
archive
/
https:
/
/
developer.nvidia.com
/
cuda
-
toolkit
-
archive
https:
/
/
developer.nvidia.com
/
cuda
-
toolkit
-
archive
https:
/
/
developer.nvidia.com
/
rdp
/
cudnn
-
download
https:
/
/
developer.nvidia.com
/
rdp
/
cudnn
-
download
conda activate
conda create
-
n yolov5_test python
=
3.8
conda activate
conda create
-
n yolov5_test python
=
3.8
activate yolov5_test
conda config
-
-
set
show_channel_urls yes
conda config
-
-
set
show_channel_urls yes
channels:
-
defaults
show_channel_urls: true
default_channels:
-
https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
pkgs
/
main
-
https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
pkgs
/
r
-
https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
pkgs
/
msys2
custom_channels:
conda
-
forge: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
msys2: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
bioconda: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
menpo: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
pytorch: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
pytorch
-
lts: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
simpleitk: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
channels:
-
defaults
show_channel_urls: true
default_channels:
-
https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
pkgs
/
main
-
https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
pkgs
/
r
-
https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
pkgs
/
msys2
custom_channels:
conda
-
forge: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
msys2: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
bioconda: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
menpo: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
pytorch: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
pytorch
-
lts: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
simpleitk: https:
/
/
mirrors.tuna.tsinghua.edu.cn
/
anaconda
/
cloud
https:
/
/
pytorch.org
/
get
-
started
/
previous
-
versions
/
https:
/
/
pytorch.org
/
get
-
started
/
previous
-
versions
/
conda install pytorch
=
=
1.12
.
1
torchvision
=
=
0.13
.
1
torchaudio
=
=
0.12
.
1
cudatoolkit
=
11.6
-
c pytorch
-
c conda
-
forge
conda install pytorch
=
=
1.12
.
1
torchvision
=
=
0.13
.
1
torchaudio
=
=
0.12
.
1
cudatoolkit
=
11.6
-
c pytorch
-
c conda
-
forge
https:
/
/
github.com
/
ultralytics
/
yolov5
https:
/
/
github.com
/
ultralytics
/
yolov5
[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!
最后于 2023-3-31 00:23
被zhang_derek编辑
,原因: