-
-
[原创]常见的加密方式实例
-
发表于: 2022-1-12 09:14 5859
-
常见的加密方式实例
MD5加密实例
- 登录测试,获取到post参数
- 在疑似点下断,并再次发包
- 查看此处值与加密后的值相同,所以这个就是加密算法
- 这是一个闭包函数,实现加密算法
~这里可以直接用md5进行加密测试,但不排除他命名为md5(),实际上自己实现的加密算法。~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | (function(g) { function o(u, z) { var w = (u & 65535 ) + (z & 65535 ) , v = (u >> 16 ) + (z >> 16 ) + (w >> 16 ); return (v << 16 ) | (w & 65535 ) } function s(u, v) { return (u << v) | (u >>> ( 32 - v)) } function c(A, w, v, u, z, y) { return o(s(o(o(w, A), o(u, y)), z), v) } function b(w, v, B, A, u, z, y) { return c((v & B) | ((~v) & A), w, v, u, z, y) } function i(w, v, B, A, u, z, y) { return c((v & A) | (B & (~A)), w, v, u, z, y) } function n(w, v, B, A, u, z, y) { return c(v ^ B ^ A, w, v, u, z, y) } function a(w, v, B, A, u, z, y) { return c(B ^ (v | (~A)), w, v, u, z, y) } function d(F, A) { F[A >> 5 ] | = 128 << ((A) % 32 ); F[(((A + 64 ) >>> 9 ) << 4 ) + 14 ] = A; var w, z, y, v, u, E = 1732584193 , D = - 271733879 , C = - 1732584194 , B = 271733878 ; for (w = 0 ; w < F.length; w + = 16 ) { z = E; y = D; v = C; u = B; E = b(E, D, C, B, F[w], 7 , - 680876936 ); B = b(B, E, D, C, F[w + 1 ], 12 , - 389564586 ); C = b(C, B, E, D, F[w + 2 ], 17 , 606105819 ); D = b(D, C, B, E, F[w + 3 ], 22 , - 1044525330 ); E = b(E, D, C, B, F[w + 4 ], 7 , - 176418897 ); B = b(B, E, D, C, F[w + 5 ], 12 , 1200080426 ); C = b(C, B, E, D, F[w + 6 ], 17 , - 1473231341 ); D = b(D, C, B, E, F[w + 7 ], 22 , - 45705983 ); E = b(E, D, C, B, F[w + 8 ], 7 , 1770035416 ); B = b(B, E, D, C, F[w + 9 ], 12 , - 1958414417 ); C = b(C, B, E, D, F[w + 10 ], 17 , - 42063 ); D = b(D, C, B, E, F[w + 11 ], 22 , - 1990404162 ); E = b(E, D, C, B, F[w + 12 ], 7 , 1804603682 ); B = b(B, E, D, C, F[w + 13 ], 12 , - 40341101 ); C = b(C, B, E, D, F[w + 14 ], 17 , - 1502002290 ); D = b(D, C, B, E, F[w + 15 ], 22 , 1236535329 ); E = i(E, D, C, B, F[w + 1 ], 5 , - 165796510 ); B = i(B, E, D, C, F[w + 6 ], 9 , - 1069501632 ); C = i(C, B, E, D, F[w + 11 ], 14 , 643717713 ); D = i(D, C, B, E, F[w], 20 , - 373897302 ); E = i(E, D, C, B, F[w + 5 ], 5 , - 701558691 ); B = i(B, E, D, C, F[w + 10 ], 9 , 38016083 ); C = i(C, B, E, D, F[w + 15 ], 14 , - 660478335 ); D = i(D, C, B, E, F[w + 4 ], 20 , - 405537848 ); E = i(E, D, C, B, F[w + 9 ], 5 , 568446438 ); B = i(B, E, D, C, F[w + 14 ], 9 , - 1019803690 ); C = i(C, B, E, D, F[w + 3 ], 14 , - 187363961 ); D = i(D, C, B, E, F[w + 8 ], 20 , 1163531501 ); E = i(E, D, C, B, F[w + 13 ], 5 , - 1444681467 ); B = i(B, E, D, C, F[w + 2 ], 9 , - 51403784 ); C = i(C, B, E, D, F[w + 7 ], 14 , 1735328473 ); D = i(D, C, B, E, F[w + 12 ], 20 , - 1926607734 ); E = n(E, D, C, B, F[w + 5 ], 4 , - 378558 ); B = n(B, E, D, C, F[w + 8 ], 11 , - 2022574463 ); C = n(C, B, E, D, F[w + 11 ], 16 , 1839030562 ); D = n(D, C, B, E, F[w + 14 ], 23 , - 35309556 ); E = n(E, D, C, B, F[w + 1 ], 4 , - 1530992060 ); B = n(B, E, D, C, F[w + 4 ], 11 , 1272893353 ); C = n(C, B, E, D, F[w + 7 ], 16 , - 155497632 ); D = n(D, C, B, E, F[w + 10 ], 23 , - 1094730640 ); E = n(E, D, C, B, F[w + 13 ], 4 , 681279174 ); B = n(B, E, D, C, F[w], 11 , - 358537222 ); C = n(C, B, E, D, F[w + 3 ], 16 , - 722521979 ); D = n(D, C, B, E, F[w + 6 ], 23 , 76029189 ); E = n(E, D, C, B, F[w + 9 ], 4 , - 640364487 ); B = n(B, E, D, C, F[w + 12 ], 11 , - 421815835 ); C = n(C, B, E, D, F[w + 15 ], 16 , 530742520 ); D = n(D, C, B, E, F[w + 2 ], 23 , - 995338651 ); E = a(E, D, C, B, F[w], 6 , - 198630844 ); B = a(B, E, D, C, F[w + 7 ], 10 , 1126891415 ); C = a(C, B, E, D, F[w + 14 ], 15 , - 1416354905 ); D = a(D, C, B, E, F[w + 5 ], 21 , - 57434055 ); E = a(E, D, C, B, F[w + 12 ], 6 , 1700485571 ); B = a(B, E, D, C, F[w + 3 ], 10 , - 1894986606 ); C = a(C, B, E, D, F[w + 10 ], 15 , - 1051523 ); D = a(D, C, B, E, F[w + 1 ], 21 , - 2054922799 ); E = a(E, D, C, B, F[w + 8 ], 6 , 1873313359 ); B = a(B, E, D, C, F[w + 15 ], 10 , - 30611744 ); C = a(C, B, E, D, F[w + 6 ], 15 , - 1560198380 ); D = a(D, C, B, E, F[w + 13 ], 21 , 1309151649 ); E = a(E, D, C, B, F[w + 4 ], 6 , - 145523070 ); B = a(B, E, D, C, F[w + 11 ], 10 , - 1120210379 ); C = a(C, B, E, D, F[w + 2 ], 15 , 718787259 ); D = a(D, C, B, E, F[w + 9 ], 21 , - 343485551 ); E = o(E, z); D = o(D, y); C = o(C, v); B = o(B, u) } return [E, D, C, B] } function p(v) { var w, u = ""; for (w = 0 ; w < v.length * 32 ; w + = 8 ) { u + = String.fromCharCode((v[w >> 5 ] >>> (w % 32 )) & 255 ) } return u } function j(v) { var w, u = []; u[(v.length >> 2 ) - 1 ] = undefined; for (w = 0 ; w < u.length; w + = 1 ) { u[w] = 0 } for (w = 0 ; w < v.length * 8 ; w + = 8 ) { u[w >> 5 ] | = (v.charCodeAt(w / 8 ) & 255 ) << (w % 32 ) } return u } function k(u) { return p(d(j(u), u.length * 8 )) } function f(w, z) { var v, y = j(w), u = [], x = [], A; u[ 15 ] = x[ 15 ] = undefined; if (y.length > 16 ) { y = d(y, w.length * 8 ) } for (v = 0 ; v < 16 ; v + = 1 ) { u[v] = y[v] ^ 909522486 ; x[v] = y[v] ^ 1549556828 } A = d(u.concat(j(z)), 512 + z.length * 8 ); return p(d(x.concat(A), 512 + 128 )) } function t(w) { var z = "0123456789abcdef" , v = "", u, y; for (y = 0 ; y < w.length; y + = 1 ) { u = w.charCodeAt(y); v + = z.charAt((u >>> 4 ) & 15 ) + z.charAt(u & 15 ) } return v } function m(u) { return unescape(encodeURIComponent(u)) } function q(u) { return k(m(u)) } function l(u) { return t(q(u)) } function h(u, v) { return f(m(u), m(v)) } function r(u, v) { return t(h(u, v)) } g.md5 = function(v, w, u) { if (!w) { if (!u) { return l(v) } else { return q(v) } } if (!u) { return r(w, v) } else { return h(w, v) } } }(typeof jQuery = = = "function" ? jQuery : this)); |
调试这段代码
python执行
RSA非对称密钥加密实例
- 登录发包
疑似点下断
查找加密算法
加密算法实现and调试
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | var RSAPublicKey = function($modulus_hex, $encryptionExponent_hex) { this.modulus = new BigInteger( $modulus_hex, 16 ); this.encryptionExponent = new BigInteger( $encryptionExponent_hex, 16 ); }; var Base64 = { base64: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=" , encode: function($ input ) { if (!$ input ) { return false; } var $output = ""; var $chr1, $chr2, $chr3; var $enc1, $enc2, $enc3, $enc4; var $i = 0 ; do { $chr1 = $ input .charCodeAt($i + + ); $chr2 = $ input .charCodeAt($i + + ); $chr3 = $ input .charCodeAt($i + + ); $enc1 = $chr1 >> 2 ; $enc2 = (($chr1 & 3 ) << 4 ) | ($chr2 >> 4 ); $enc3 = (($chr2 & 15 ) << 2 ) | ($chr3 >> 6 ); $enc4 = $chr3 & 63 ; if (isNaN($chr2)) $enc3 = $enc4 = 64 ; else if (isNaN($chr3)) $enc4 = 64 ; $output + = this.base64.charAt($enc1) + this.base64.charAt($enc2) + this.base64.charAt($enc3) + this.base64.charAt($enc4); } while ($i < $ input .length); return $output; }, decode: function($ input ) { if (!$ input ) return false; $ input = $ input .replace( / [^A - Za - z0 - 9 \ + \ / \ = ] / g, ""); var $output = ""; var $enc1, $enc2, $enc3, $enc4; var $i = 0 ; do { $enc1 = this.base64.indexOf($ input .charAt($i + + )); $enc2 = this.base64.indexOf($ input .charAt($i + + )); $enc3 = this.base64.indexOf($ input .charAt($i + + )); $enc4 = this.base64.indexOf($ input .charAt($i + + )); $output + = String.fromCharCode(($enc1 << 2 ) | ($enc2 >> 4 )); if ($enc3 ! = 64 ) $output + = String.fromCharCode((($enc2 & 15 ) << 4 ) | ($enc3 >> 2 )); if ($enc4 ! = 64 ) $output + = String.fromCharCode((($enc3 & 3 ) << 6 ) | $enc4); } while ($i < $ input .length); return $output; } }; var Hex = { hex : "0123456789abcdef" , encode: function($ input ) { if (!$ input ) return false; var $output = ""; var $k; var $i = 0 ; do { $k = $ input .charCodeAt($i + + ); $output + = this. hex .charAt(($k >> 4 ) & 0xf ) + this. hex .charAt($k & 0xf ); } while ($i < $ input .length); return $output; }, decode: function($ input ) { if (!$ input ) return false; $ input = $ input .replace( / [^ 0 - 9abcdef ] / g, ""); var $output = ""; var $i = 0 ; do { $output + = String.fromCharCode(((this. hex .indexOf($ input .charAt($i + + )) << 4 ) & 0xf0 ) | (this. hex .indexOf($ input .charAt($i + + )) & 0xf )); } while ($i < $ input .length); return $output; } }; var RSA = { getPublicKey: function( $modulus_hex, $exponent_hex ) { return new RSAPublicKey( $modulus_hex, $exponent_hex ); }, encrypt: function($data, $pubkey) { if (!$pubkey) return false; $data = this.pkcs1pad2($data,($pubkey.modulus.bitLength() + 7 )>> 3 ); if (!$data) return false; $data = $data.modPowInt($pubkey.encryptionExponent, $pubkey.modulus); if (!$data) return false; $data = $data.toString( 16 ); if (($data.length & 1 ) = = 1 ) $data = "0" + $data; return Base64.encode( Hex .decode($data)); }, pkcs1pad2: function($data, $keysize) { if ($keysize < $data.length + 11 ) return null; var $ buffer = []; var $i = $data.length - 1 ; while ($i > = 0 && $keysize > 0 ) $ buffer [ - - $keysize] = $data.charCodeAt($i - - ); $ buffer [ - - $keysize] = 0 ; while ($keysize > 2 ) $ buffer [ - - $keysize] = Math.floor(Math.random() * 254 ) + 1 ; $ buffer [ - - $keysize] = 2 ; $ buffer [ - - $keysize] = 0 ; return new BigInteger($ buffer ); } }; |
- BigInteger未定义,查找这个函数实现并贴上去
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 | / / Copyright (c) 2005 Tom Wu / / All Rights Reserved. / / See "LICENSE" for details. / * * Copyright (c) 2003 - 2005 Tom Wu * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software" ), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and / or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * In addition, the following condition applies: * * All redistributions must retain an intact copy of this copyright notice * and disclaimer. * / / / Basic JavaScript BN library - subset useful for RSA encryption. / / Bits per digit var dbits; / / JavaScript engine analysis var canary = 0xdeadbeefcafe ; var j_lm = ((canary& 0xffffff ) = = 0xefcafe ); / / (public) Constructor function BigInteger(a,b,c) { if (a ! = null) if ( "number" = = typeof a) this.fromNumber(a,b,c); else if (b = = null && "string" ! = typeof a) this.fromString(a, 256 ); else this.fromString(a,b); } / / return new, unset BigInteger function nbi() { return new BigInteger(null); } / / am: Compute w_j + = (x * this_i), propagate carries, / / c is initial carry, returns final carry. / / c < 3 * dvalue, x < 2 * dvalue, this_i < dvalue / / We need to select the fastest one that works in this environment. / / am1: use a single mult and divide to get the high bits, / / max digit bits should be 26 because / / max internal value = 2 * dvalue^ 2 - 2 * dvalue (< 2 ^ 53 ) function am1(i,x,w,j,c,n) { while ( - - n > = 0 ) { var v = x * this[i + + ] + w[j] + c; c = Math.floor(v / 0x4000000 ); w[j + + ] = v& 0x3ffffff ; } return c; } / / am2 avoids a big mult - and - extract completely. / / Max digit bits should be < = 30 because we do bitwise ops / / on values up to 2 * hdvalue^ 2 - hdvalue - 1 (< 2 ^ 31 ) function am2(i,x,w,j,c,n) { var xl = x& 0x7fff , xh = x>> 15 ; while ( - - n > = 0 ) { var l = this[i]& 0x7fff ; var h = this[i + + ]>> 15 ; var m = xh * l + h * xl; l = xl * l + ((m& 0x7fff )<< 15 ) + w[j] + (c& 0x3fffffff ); c = (l>>> 30 ) + (m>>> 15 ) + xh * h + (c>>> 30 ); w[j + + ] = l& 0x3fffffff ; } return c; } / / Alternately, set max digit bits to 28 since some / / browsers slow down when dealing with 32 - bit numbers. function am3(i,x,w,j,c,n) { var xl = x& 0x3fff , xh = x>> 14 ; while ( - - n > = 0 ) { var l = this[i]& 0x3fff ; var h = this[i + + ]>> 14 ; var m = xh * l + h * xl; l = xl * l + ((m& 0x3fff )<< 14 ) + w[j] + c; c = (l>> 28 ) + (m>> 14 ) + xh * h; w[j + + ] = l& 0xfffffff ; } return c; } if (j_lm && (navigator.appName = = "Microsoft Internet Explorer" )) { BigInteger.prototype.am = am2; dbits = 30 ; } else if (j_lm && (navigator.appName ! = "Netscape" )) { BigInteger.prototype.am = am1; dbits = 26 ; } else { / / Mozilla / Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28 ; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = (( 1 <<dbits) - 1 ); BigInteger.prototype.DV = ( 1 <<dbits); var BI_FP = 52 ; BigInteger.prototype.FV = Math. pow ( 2 ,BI_FP); BigInteger.prototype.F1 = BI_FP - dbits; BigInteger.prototype.F2 = 2 * dbits - BI_FP; / / Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz" ; var BI_RC = new Array(); var rr,vv; rr = "0" .charCodeAt( 0 ); for (vv = 0 ; vv < = 9 ; + + vv) BI_RC[rr + + ] = vv; rr = "a" .charCodeAt( 0 ); for (vv = 10 ; vv < 36 ; + + vv) BI_RC[rr + + ] = vv; rr = "A" .charCodeAt( 0 ); for (vv = 10 ; vv < 36 ; + + vv) BI_RC[rr + + ] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s,i) { var c = BI_RC[s.charCodeAt(i)]; return (c = = null)? - 1 :c; } / / (protected) copy this to r function bnpCopyTo(r) { for (var i = this.t - 1 ; i > = 0 ; - - i) r[i] = this[i]; r.t = this.t; r.s = this.s; } / / (protected) set from integer value x, - DV < = x < DV function bnpFromInt(x) { this.t = 1 ; this.s = (x< 0 )? - 1 : 0 ; if (x > 0 ) this[ 0 ] = x; else if (x < - 1 ) this[ 0 ] = x + DV; else this.t = 0 ; } / / return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } / / (protected) set from string and radix function bnpFromString(s,b) { var k; if (b = = 16 ) k = 4 ; else if (b = = 8 ) k = 3 ; else if (b = = 256 ) k = 8 ; / / byte array else if (b = = 2 ) k = 1 ; else if (b = = 32 ) k = 5 ; else if (b = = 4 ) k = 2 ; else { this.fromRadix(s,b); return ; } this.t = 0 ; this.s = 0 ; var i = s.length, mi = false, sh = 0 ; while ( - - i > = 0 ) { var x = (k = = 8 )?s[i]& 0xff :intAt(s,i); if (x < 0 ) { if (s.charAt(i) = = "-" ) mi = true; continue ; } mi = false; if (sh = = 0 ) this[this.t + + ] = x; else if (sh + k > this.DB) { this[this.t - 1 ] | = (x&(( 1 <<(this.DB - sh)) - 1 ))<<sh; this[this.t + + ] = (x>>(this.DB - sh)); } else this[this.t - 1 ] | = x<<sh; sh + = k; if (sh > = this.DB) sh - = this.DB; } if (k = = 8 && (s[ 0 ]& 0x80 ) ! = 0 ) { this.s = - 1 ; if (sh > 0 ) this[this.t - 1 ] | = (( 1 <<(this.DB - sh)) - 1 )<<sh; } this.clamp(); if (mi) BigInteger.ZERO.subTo(this,this); } / / (protected) clamp off excess high words function bnpClamp() { var c = this.s&this.DM; while (this.t > 0 && this[this.t - 1 ] = = c) - - this.t; } / / (public) return string representation in given radix function bnToString(b) { if (this.s < 0 ) return "-" + this.negate().toString(b); var k; if (b = = 16 ) k = 4 ; else if (b = = 8 ) k = 3 ; else if (b = = 2 ) k = 1 ; else if (b = = 32 ) k = 5 ; else if (b = = 4 ) k = 2 ; else return this.toRadix(b); var km = ( 1 <<k) - 1 , d, m = false, r = "", i = this.t; var p = this.DB - (i * this.DB) % k; if (i - - > 0 ) { if (p < this.DB && (d = this[i]>>p) > 0 ) { m = true; r = int2char(d); } while (i > = 0 ) { if (p < k) { d = (this[i]&(( 1 <<p) - 1 ))<<(k - p); d | = this[ - - i]>>(p + = this.DB - k); } else { d = (this[i]>>(p - = k))&km; if (p < = 0 ) { p + = this.DB; - - i; } } if (d > 0 ) m = true; if (m) r + = int2char(d); } } return m?r: "0" ; } / / (public) - this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } / / (public) |this| function bnAbs() { return (this.s< 0 )?this.negate():this; } / / (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s - a.s; if (r ! = 0 ) return r; var i = this.t; r = i - a.t; if (r ! = 0 ) return r; while ( - - i > = 0 ) if ((r = this[i] - a[i]) ! = 0 ) return r; return 0 ; } / / returns bit length of the integer x function nbits(x) { var r = 1 , t; if ((t = x>>> 16 ) ! = 0 ) { x = t; r + = 16 ; } if ((t = x>> 8 ) ! = 0 ) { x = t; r + = 8 ; } if ((t = x>> 4 ) ! = 0 ) { x = t; r + = 4 ; } if ((t = x>> 2 ) ! = 0 ) { x = t; r + = 2 ; } if ((t = x>> 1 ) ! = 0 ) { x = t; r + = 1 ; } return r; } / / (public) return the number of bits in "this" function bnBitLength() { if (this.t < = 0 ) return 0 ; return this.DB * (this.t - 1 ) + nbits(this[this.t - 1 ]^(this.s&this.DM)); } / / (protected) r = this << n * DB function bnpDLShiftTo(n,r) { var i; for (i = this.t - 1 ; i > = 0 ; - - i) r[i + n] = this[i]; for (i = n - 1 ; i > = 0 ; - - i) r[i] = 0 ; r.t = this.t + n; r.s = this.s; } / / (protected) r = this >> n * DB function bnpDRShiftTo(n,r) { for (var i = n; i < this.t; + + i) r[i - n] = this[i]; r.t = Math. max (this.t - n, 0 ); r.s = this.s; } / / (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n % this.DB; var cbs = this.DB - bs; var bm = ( 1 <<cbs) - 1 ; var ds = Math.floor(n / this.DB), c = (this.s<<bs)&this.DM, i; for (i = this.t - 1 ; i > = 0 ; - - i) { r[i + ds + 1 ] = (this[i]>>cbs)|c; c = (this[i]&bm)<<bs; } for (i = ds - 1 ; i > = 0 ; - - i) r[i] = 0 ; r[ds] = c; r.t = this.t + ds + 1 ; r.s = this.s; r.clamp(); } / / (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n / this.DB); if (ds > = this.t) { r.t = 0 ; return ; } var bs = n % this.DB; var cbs = this.DB - bs; var bm = ( 1 <<bs) - 1 ; r[ 0 ] = this[ds]>>bs; for (var i = ds + 1 ; i < this.t; + + i) { r[i - ds - 1 ] | = (this[i]&bm)<<cbs; r[i - ds] = this[i]>>bs; } if (bs > 0 ) r[this.t - ds - 1 ] | = (this.s&bm)<<cbs; r.t = this.t - ds; r.clamp(); } / / (protected) r = this - a function bnpSubTo(a,r) { var i = 0 , c = 0 , m = Math. min (a.t,this.t); while (i < m) { c + = this[i] - a[i]; r[i + + ] = c&this.DM; c >> = this.DB; } if (a.t < this.t) { c - = a.s; while (i < this.t) { c + = this[i]; r[i + + ] = c&this.DM; c >> = this.DB; } c + = this.s; } else { c + = this.s; while (i < a.t) { c - = a[i]; r[i + + ] = c&this.DM; c >> = this.DB; } c - = a.s; } r.s = (c< 0 )? - 1 : 0 ; if (c < - 1 ) r[i + + ] = this.DV + c; else if (c > 0 ) r[i + + ] = c; r.t = i; r.clamp(); } / / (protected) r = this * a, r ! = this,a (HAC 14.12 ) / / "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this. abs (), y = a. abs (); var i = x.t; r.t = i + y.t; while ( - - i > = 0 ) r[i] = 0 ; for (i = 0 ; i < y.t; + + i) r[i + x.t] = x.am( 0 ,y[i],r,i, 0 ,x.t); r.s = 0 ; r.clamp(); if (this.s ! = a.s) BigInteger.ZERO.subTo(r,r); } / / (protected) r = this^ 2 , r ! = this (HAC 14.16 ) function bnpSquareTo(r) { var x = this. abs (); var i = r.t = 2 * x.t; while ( - - i > = 0 ) r[i] = 0 ; for (i = 0 ; i < x.t - 1 ; + + i) { var c = x.am(i,x[i],r, 2 * i, 0 , 1 ); if ((r[i + x.t] + = x.am(i + 1 , 2 * x[i],r, 2 * i + 1 ,c,x.t - i - 1 )) > = x.DV) { r[i + x.t] - = x.DV; r[i + x.t + 1 ] = 1 ; } } if (r.t > 0 ) r[r.t - 1 ] + = x.am(i,x[i],r, 2 * i, 0 , 1 ); r.s = 0 ; r.clamp(); } / / (protected) divide this by m, quotient and remainder to q, r (HAC 14.20 ) / / r ! = q, this ! = m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m. abs (); if (pm.t < = 0 ) return ; var pt = this. abs (); if (pt.t < pm.t) { if (q ! = null) q.fromInt( 0 ); if (r ! = null) this.copyTo(r); return ; } if (r = = null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB - nbits(pm[pm.t - 1 ]); / / normalize modulus if (nsh > 0 ) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys - 1 ]; if (y0 = = 0 ) return ; var yt = y0 * ( 1 <<this.F1) + ((ys> 1 )?y[ys - 2 ]>>this.F2: 0 ); var d1 = this.FV / yt, d2 = ( 1 <<this.F1) / yt, e = 1 <<this.F2; var i = r.t, j = i - ys, t = (q = = null)?nbi():q; y.dlShiftTo(j,t); if (r.compareTo(t) > = 0 ) { r[r.t + + ] = 1 ; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); / / "negative" y so we can replace sub with am later while (y.t < ys) y[y.t + + ] = 0 ; while ( - - j > = 0 ) { / / Estimate quotient digit var qd = (r[ - - i] = = y0)?this.DM:Math.floor(r[i] * d1 + (r[i - 1 ] + e) * d2); if ((r[i] + = y.am( 0 ,qd,r,j, 0 ,ys)) < qd) { / / Try it out y.dlShiftTo(j,t); r.subTo(t,r); while (r[i] < - - qd) r.subTo(t,r); } } if (q ! = null) { r.drShiftTo(ys,q); if (ts ! = ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if (nsh > 0 ) r.rShiftTo(nsh,r); / / Denormalize remainder if (ts < 0 ) BigInteger.ZERO.subTo(r,r); } / / (public) this mod a function bnMod(a) { var r = nbi(); this. abs ().divRemTo(a,null,r); if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0 ) a.subTo(r,r); return r; } / / Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if (x.s < 0 || x.compareTo(this.m) > = 0 ) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x.multiplyTo(y,r); this. reduce (r); } function cSqrTo(x,r) { x.squareTo(r); this. reduce (r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype. reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; / / (protected) return "-1/this % 2^DB" ; useful for Mont. reduction / / justification: / / xy = = 1 (mod m) / / xy = 1 + km / / xy( 2 - xy) = ( 1 + km)( 1 - km) / / x[y( 2 - xy)] = 1 - k^ 2m ^ 2 / / x[y( 2 - xy)] = = 1 (mod m^ 2 ) / / if y is 1 / x mod m, then y( 2 - xy) is 1 / x mod m^ 2 / / should reduce x and y( 2 - xy) by m^ 2 at each step to keep size bounded. / / JS multiply "overflows" differently from C / C + + , so care is needed here. function bnpInvDigit() { if (this.t < 1 ) return 0 ; var x = this[ 0 ]; if ((x& 1 ) = = 0 ) return 0 ; var y = x& 3 ; / / y = = 1 / x mod 2 ^ 2 y = (y * ( 2 - (x& 0xf ) * y))& 0xf ; / / y = = 1 / x mod 2 ^ 4 y = (y * ( 2 - (x& 0xff ) * y))& 0xff ; / / y = = 1 / x mod 2 ^ 8 y = (y * ( 2 - (((x& 0xffff ) * y)& 0xffff )))& 0xffff ; / / y = = 1 / x mod 2 ^ 16 / / last step - calculate inverse mod DV directly; / / assumes 16 < DB < = 32 and assumes ability to handle 48 - bit ints y = (y * ( 2 - x * y % this.DV)) % this.DV; / / y = = 1 / x mod 2 ^dbits / / we really want the negative inverse, and - DV < y < DV return (y> 0 )?this.DV - y: - y; } / / Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp& 0x7fff ; this.mph = this.mp>> 15 ; this.um = ( 1 <<(m.DB - 15 )) - 1 ; this.mt2 = 2 * m.t; } / / xR mod m function montConvert(x) { var r = nbi(); x. abs ().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0 ) this.m.subTo(r,r); return r; } / / x / R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this. reduce (r); return r; } / / x = x / R mod m (HAC 14.32 ) function montReduce(x) { while (x.t < = this.mt2) / / pad x so am has enough room later x[x.t + + ] = 0 ; for (var i = 0 ; i < this.m.t; + + i) { / / faster way of calculating u0 = x[i] * mp mod DV var j = x[i]& 0x7fff ; var u0 = (j * this.mpl + (((j * this.mph + (x[i]>> 15 ) * this.mpl)&this.um)<< 15 ))&x.DM; / / use am to combine the multiply - shift - add into one call j = i + this.m.t; x[j] + = this.m.am( 0 ,u0,x,i, 0 ,this.m.t); / / propagate carry while (x[j] > = x.DV) { x[j] - = x.DV; x[ + + j] + + ; } } x.clamp(); x.drShiftTo(this.m.t,x); if (x.compareTo(this.m) > = 0 ) x.subTo(this.m,x); } / / r = "x^2/R mod m" ; x ! = r function montSqrTo(x,r) { x.squareTo(r); this. reduce (r); } / / r = "xy/R mod m" ; x,y ! = r function montMulTo(x,y,r) { x.multiplyTo(y,r); this. reduce (r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype. reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; / / (protected) true iff this is even function bnpIsEven() { return ((this.t> 0 )?(this[ 0 ]& 1 ):this.s) = = 0 ; } / / (protected) this^e, e < 2 ^ 32 , doing sqr and mul with "r" (HAC 14.79 ) function bnpExp(e,z) { if (e > 0xffffffff || e < 1 ) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1 ; g.copyTo(r); while ( - - i > = 0 ) { z.sqrTo(r,r2); if ((e&( 1 <<i)) > 0 ) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } / / (public) this^e % m, 0 < = e < 2 ^ 32 function bnModPowInt(e,m) { var z; if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); } / / protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; / / public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype. abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; / / "constants" BigInteger.ZERO = nbv( 0 ); BigInteger.ONE = nbv( 1 ); / / Copyright (c) 2005 Tom Wu / / All Rights Reserved. / / See "LICENSE" for details. / / Extended JavaScript BN functions, required for RSA private ops. / / (public) function bnClone() { var r = nbi(); this.copyTo(r); return r; } / / (public) return value as integer function bnIntValue() { if (this.s < 0 ) { if (this.t = = 1 ) return this[ 0 ] - this.DV; else if (this.t = = 0 ) return - 1 ; } else if (this.t = = 1 ) return this[ 0 ]; else if (this.t = = 0 ) return 0 ; / / assumes 16 < DB < 32 return ((this[ 1 ]&(( 1 <<( 32 - this.DB)) - 1 ))<<this.DB)|this[ 0 ]; } / / (public) return value as byte function bnByteValue() { return (this.t = = 0 )?this.s:(this[ 0 ]<< 24 )>> 24 ; } / / (public) return value as short (assumes DB> = 16 ) function bnShortValue() { return (this.t = = 0 )?this.s:(this[ 0 ]<< 16 )>> 16 ; } / / (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)); } / / (public) 0 if this = = 0 , 1 if this > 0 function bnSigNum() { if (this.s < 0 ) return - 1 ; else if (this.t < = 0 || (this.t = = 1 && this[ 0 ] < = 0 )) return 0 ; else return 1 ; } / / (protected) convert to radix string function bnpToRadix(b) { if (b = = null) b = 10 ; if (this.signum() = = 0 || b < 2 || b > 36 ) return "0" ; var cs = this.chunkSize(b); var a = Math. pow (b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d,y,z); while (y.signum() > 0 ) { r = (a + z.intValue()).toString(b).substr( 1 ) + r; y.divRemTo(d,y,z); } return z.intValue().toString(b) + r; } / / (protected) convert from radix string function bnpFromRadix(s,b) { this.fromInt( 0 ); if (b = = null) b = 10 ; var cs = this.chunkSize(b); var d = Math. pow (b,cs), mi = false, j = 0 , w = 0 ; for (var i = 0 ; i < s.length; + + i) { var x = intAt(s,i); if (x < 0 ) { if (s.charAt(i) = = "-" && this.signum() = = 0 ) mi = true; continue ; } w = b * w + x; if ( + + j > = cs) { this.dMultiply(d); this.dAddOffset(w, 0 ); j = 0 ; w = 0 ; } } if (j > 0 ) { this.dMultiply(Math. pow (b,j)); this.dAddOffset(w, 0 ); } if (mi) BigInteger.ZERO.subTo(this,this); } / / (protected) alternate constructor function bnpFromNumber(a,b,c) { if ( "number" = = typeof b) { / / new BigInteger( int , int ,RNG) if (a < 2 ) this.fromInt( 1 ); else { this.fromNumber(a,c); if (!this.testBit(a - 1 )) / / force MSB set this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1 ),op_or,this); if (this.isEven()) this.dAddOffset( 1 , 0 ); / / force odd while (!this.isProbablePrime(b)) { this.dAddOffset( 2 , 0 ); if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1 ),this); } } } else { / / new BigInteger( int ,RNG) var x = new Array(), t = a& 7 ; x.length = (a>> 3 ) + 1 ; b.nextBytes(x); if (t > 0 ) x[ 0 ] & = (( 1 <<t) - 1 ); else x[ 0 ] = 0 ; this.fromString(x, 256 ); } } / / (public) convert to bigendian byte array function bnToByteArray() { var i = this.t, r = new Array(); r[ 0 ] = this.s; var p = this.DB - (i * this.DB) % 8 , d, k = 0 ; if (i - - > 0 ) { if (p < this.DB && (d = this[i]>>p) ! = (this.s&this.DM)>>p) r[k + + ] = d|(this.s<<(this.DB - p)); while (i > = 0 ) { if (p < 8 ) { d = (this[i]&(( 1 <<p) - 1 ))<<( 8 - p); d | = this[ - - i]>>(p + = this.DB - 8 ); } else { d = (this[i]>>(p - = 8 ))& 0xff ; if (p < = 0 ) { p + = this.DB; - - i; } } if ((d& 0x80 ) ! = 0 ) d | = - 256 ; if (k = = 0 && (this.s& 0x80 ) ! = (d& 0x80 )) + + k; if (k > 0 || d ! = this.s) r[k + + ] = d; } } return r; } function bnEquals(a) { return (this.compareTo(a) = = 0 ); } function bnMin(a) { return (this.compareTo(a)< 0 )?this:a; } function bnMax(a) { return (this.compareTo(a)> 0 )?this:a; } / / (protected) r = this op a (bitwise) function bnpBitwiseTo(a,op,r) { var i, f, m = Math. min (a.t,this.t); for (i = 0 ; i < m; + + i) r[i] = op(this[i],a[i]); if (a.t < this.t) { f = a.s&this.DM; for (i = m; i < this.t; + + i) r[i] = op(this[i],f); r.t = this.t; } else { f = this.s&this.DM; for (i = m; i < a.t; + + i) r[i] = op(f,a[i]); r.t = a.t; } r.s = op(this.s,a.s); r.clamp(); } / / (public) this & a function op_and(x,y) { return x&y; } function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } / / (public) this | a function op_or(x,y) { return x|y; } function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } / / (public) this ^ a function op_xor(x,y) { return x^y; } function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } / / (public) this & ~a function op_andnot(x,y) { return x&~y; } function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } / / (public) ~this function bnNot() { var r = nbi(); for (var i = 0 ; i < this.t; + + i) r[i] = this.DM&~this[i]; r.t = this.t; r.s = ~this.s; return r; } / / (public) this << n function bnShiftLeft(n) { var r = nbi(); if (n < 0 ) this.rShiftTo( - n,r); else this.lShiftTo(n,r); return r; } / / (public) this >> n function bnShiftRight(n) { var r = nbi(); if (n < 0 ) this.lShiftTo( - n,r); else this.rShiftTo(n,r); return r; } / / return index of lowest 1 - bit in x, x < 2 ^ 31 function lbit(x) { if (x = = 0 ) return - 1 ; var r = 0 ; if ((x& 0xffff ) = = 0 ) { x >> = 16 ; r + = 16 ; } if ((x& 0xff ) = = 0 ) { x >> = 8 ; r + = 8 ; } if ((x& 0xf ) = = 0 ) { x >> = 4 ; r + = 4 ; } if ((x& 3 ) = = 0 ) { x >> = 2 ; r + = 2 ; } if ((x& 1 ) = = 0 ) + + r; return r; } / / (public) returns index of lowest 1 - bit ( or - 1 if none) function bnGetLowestSetBit() { for (var i = 0 ; i < this.t; + + i) if (this[i] ! = 0 ) return i * this.DB + lbit(this[i]); if (this.s < 0 ) return this.t * this.DB; return - 1 ; } / / return number of 1 bits in x function cbit(x) { var r = 0 ; while (x ! = 0 ) { x & = x - 1 ; + + r; } return r; } / / (public) return number of set bits function bnBitCount() { var r = 0 , x = this.s&this.DM; for (var i = 0 ; i < this.t; + + i) r + = cbit(this[i]^x); return r; } / / (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n / this.DB); if (j > = this.t) return (this.s! = 0 ); return ((this[j]&( 1 <<(n % this.DB)))! = 0 ); } / / (protected) this op ( 1 <<n) function bnpChangeBit(n,op) { var r = BigInteger.ONE.shiftLeft(n); this.bitwiseTo(r,op,r); return r; } / / (public) this | ( 1 <<n) function bnSetBit(n) { return this.changeBit(n,op_or); } / / (public) this & ~( 1 <<n) function bnClearBit(n) { return this.changeBit(n,op_andnot); } / / (public) this ^ ( 1 <<n) function bnFlipBit(n) { return this.changeBit(n,op_xor); } / / (protected) r = this + a function bnpAddTo(a,r) { var i = 0 , c = 0 , m = Math. min (a.t,this.t); while (i < m) { c + = this[i] + a[i]; r[i + + ] = c&this.DM; c >> = this.DB; } if (a.t < this.t) { c + = a.s; while (i < this.t) { c + = this[i]; r[i + + ] = c&this.DM; c >> = this.DB; } c + = this.s; } else { c + = this.s; while (i < a.t) { c + = a[i]; r[i + + ] = c&this.DM; c >> = this.DB; } c + = a.s; } r.s = (c< 0 )? - 1 : 0 ; if (c > 0 ) r[i + + ] = c; else if (c < - 1 ) r[i + + ] = this.DV + c; r.t = i; r.clamp(); } / / (public) this + a function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } / / (public) this - a function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } / / (public) this * a function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } / / (public) this / a function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } / / (public) this % a function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } / / (public) [this / a,this % a] function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this.divRemTo(a,q,r); return new Array(q,r); } / / (protected) this * = n, this > = 0 , 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am( 0 ,n - 1 ,this, 0 , 0 ,this.t); + + this.t; this.clamp(); } / / (protected) this + = n << w words, this > = 0 function bnpDAddOffset(n,w) { while (this.t < = w) this[this.t + + ] = 0 ; this[w] + = n; while (this[w] > = this.DV) { this[w] - = this.DV; if ( + + w > = this.t) this[this.t + + ] = 0 ; + + this[w]; } } / / A "null" reducer function NullExp() {} function nNop(x) { return x; } function nMulTo(x,y,r) { x.multiplyTo(y,r); } function nSqrTo(x,r) { x.squareTo(r); } NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; / / (public) this^e function bnPow(e) { return this.exp(e,new NullExp()); } / / (protected) r = lower n words of "this * a" , a.t < = n / / "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a,n,r) { var i = Math. min (this.t + a.t,n); r.s = 0 ; / / assumes a,this > = 0 r.t = i; while (i > 0 ) r[ - - i] = 0 ; var j; for (j = r.t - this.t; i < j; + + i) r[i + this.t] = this.am( 0 ,a[i],r,i, 0 ,this.t); for (j = Math. min (a.t,n); i < j; + + i) this.am( 0 ,a[i],r,i, 0 ,n - i); r.clamp(); } / / (protected) r = "this * a" without lower n words, n > 0 / / "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a,n,r) { - - n; var i = r.t = this.t + a.t - n; r.s = 0 ; / / assumes a,this > = 0 while ( - - i > = 0 ) r[i] = 0 ; for (i = Math. max (n - this.t, 0 ); i < a.t; + + i) r[this.t + i - n] = this.am(n - i,a[i],r, 0 , 0 ,this.t + i - n); r.clamp(); r.drShiftTo( 1 ,r); } / / Barrett modular reduction function Barrett(m) { / / setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo( 2 * m.t,this.r2); this.mu = this.r2.divide(m); this.m = m; } function barrettConvert(x) { if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m); else if (x.compareTo(this.m) < 0 ) return x; else { var r = nbi(); x.copyTo(r); this. reduce (r); return r; } } function barrettRevert(x) { return x; } / / x = x mod m (HAC 14.42 ) function barrettReduce(x) { x.drShiftTo(this.m.t - 1 ,this.r2); if (x.t > this.m.t + 1 ) { x.t = this.m.t + 1 ; x.clamp(); } this.mu.multiplyUpperTo(this.r2,this.m.t + 1 ,this.q3); this.m.multiplyLowerTo(this.q3,this.m.t + 1 ,this.r2); while (x.compareTo(this.r2) < 0 ) x.dAddOffset( 1 ,this.m.t + 1 ); x.subTo(this.r2,x); while (x.compareTo(this.m) > = 0 ) x.subTo(this.m,x); } / / r = x^ 2 mod m; x ! = r function barrettSqrTo(x,r) { x.squareTo(r); this. reduce (r); } / / r = x * y mod m; x,y ! = r function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this. reduce (r); } Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype. reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; / / (public) this^e % m (HAC 14.85 ) function bnModPow(e,m) { var i = e.bitLength(), k, r = nbv( 1 ), z; if (i < = 0 ) return r; else if (i < 18 ) k = 1 ; else if (i < 48 ) k = 3 ; else if (i < 144 ) k = 4 ; else if (i < 768 ) k = 5 ; else k = 6 ; if (i < 8 ) z = new Classic(m); else if (m.isEven()) z = new Barrett(m); else z = new Montgomery(m); / / precomputation var g = new Array(), n = 3 , k1 = k - 1 , km = ( 1 <<k) - 1 ; g[ 1 ] = z.convert(this); if (k > 1 ) { var g2 = nbi(); z.sqrTo(g[ 1 ],g2); while (n < = km) { g[n] = nbi(); z.mulTo(g2,g[n - 2 ],g[n]); n + = 2 ; } } var j = e.t - 1 , w, is1 = true, r2 = nbi(), t; i = nbits(e[j]) - 1 ; while (j > = 0 ) { if (i > = k1) w = (e[j]>>(i - k1))&km; else { w = (e[j]&(( 1 <<(i + 1 )) - 1 ))<<(k1 - i); if (j > 0 ) w | = e[j - 1 ]>>(this.DB + i - k1); } n = k; while ((w& 1 ) = = 0 ) { w >> = 1 ; - - n; } if ((i - = n) < 0 ) { i + = this.DB; - - j; } if (is1) { / / ret = = 1 , don't bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while (n > 1 ) { z.sqrTo(r,r2); z.sqrTo(r2,r); n - = 2 ; } if (n > 0 ) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2,g[w],r); } while (j > = 0 && (e[j]&( 1 <<i)) = = 0 ) { z.sqrTo(r,r2); t = r; r = r2; r2 = t; if ( - - i < 0 ) { i = this.DB - 1 ; - - j; } } } return z.revert(r); } / / (public) gcd(this,a) (HAC 14.54 ) function bnGCD(a) { var x = (this.s< 0 )?this.negate():this.clone(); var y = (a.s< 0 )?a.negate():a.clone(); if (x.compareTo(y) < 0 ) { var t = x; x = y; y = t; } var i = x.getLowestSetBit(), g = y.getLowestSetBit(); if (g < 0 ) return x; if (i < g) g = i; if (g > 0 ) { x.rShiftTo(g,x); y.rShiftTo(g,y); } while (x.signum() > 0 ) { if ((i = x.getLowestSetBit()) > 0 ) x.rShiftTo(i,x); if ((i = y.getLowestSetBit()) > 0 ) y.rShiftTo(i,y); if (x.compareTo(y) > = 0 ) { x.subTo(y,x); x.rShiftTo( 1 ,x); } else { y.subTo(x,y); y.rShiftTo( 1 ,y); } } if (g > 0 ) y.lShiftTo(g,y); return y; } / / (protected) this % n, n < 2 ^ 26 function bnpModInt(n) { if (n < = 0 ) return 0 ; var d = this.DV % n, r = (this.s< 0 )?n - 1 : 0 ; if (this.t > 0 ) if (d = = 0 ) r = this[ 0 ] % n; else for (var i = this.t - 1 ; i > = 0 ; - - i) r = (d * r + this[i]) % n; return r; } / / (public) 1 / this % m (HAC 14.61 ) function bnModInverse(m) { var ac = m.isEven(); if ((this.isEven() && ac) || m.signum() = = 0 ) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv( 1 ), b = nbv( 0 ), c = nbv( 0 ), d = nbv( 1 ); while (u.signum() ! = 0 ) { while (u.isEven()) { u.rShiftTo( 1 ,u); if (ac) { if (!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } a.rShiftTo( 1 ,a); } else if (!b.isEven()) b.subTo(m,b); b.rShiftTo( 1 ,b); } while (v.isEven()) { v.rShiftTo( 1 ,v); if (ac) { if (!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } c.rShiftTo( 1 ,c); } else if (!d.isEven()) d.subTo(m,d); d.rShiftTo( 1 ,d); } if (u.compareTo(v) > = 0 ) { u.subTo(v,u); if (ac) a.subTo(c,a); b.subTo(d,b); } else { v.subTo(u,v); if (ac) c.subTo(a,c); d.subTo(b,d); } } if (v.compareTo(BigInteger.ONE) ! = 0 ) return BigInteger.ZERO; if (d.compareTo(m) > = 0 ) return d.subtract(m); if (d.signum() < 0 ) d.addTo(m,d); else return d; if (d.signum() < 0 ) return d.add(m); else return d; } var lowprimes = [ 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 , 109 , 113 , 127 , 131 , 137 , 139 , 149 , 151 , 157 , 163 , 167 , 173 , 179 , 181 , 191 , 193 , 197 , 199 , 211 , 223 , 227 , 229 , 233 , 239 , 241 , 251 , 257 , 263 , 269 , 271 , 277 , 281 , 283 , 293 , 307 , 311 , 313 , 317 , 331 , 337 , 347 , 349 , 353 , 359 , 367 , 373 , 379 , 383 , 389 , 397 , 401 , 409 , 419 , 421 , 431 , 433 , 439 , 443 , 449 , 457 , 461 , 463 , 467 , 479 , 487 , 491 , 499 , 503 , 509 ]; var lplim = ( 1 << 26 ) / lowprimes[lowprimes.length - 1 ]; / / (public) test primality with certainty > = 1 - . 5 ^t function bnIsProbablePrime(t) { var i, x = this. abs (); if (x.t = = 1 && x[ 0 ] < = lowprimes[lowprimes.length - 1 ]) { for (i = 0 ; i < lowprimes.length; + + i) if (x[ 0 ] = = lowprimes[i]) return true; return false; } if (x.isEven()) return false; i = 1 ; while (i < lowprimes.length) { var m = lowprimes[i], j = i + 1 ; while (j < lowprimes.length && m < lplim) m * = lowprimes[j + + ]; m = x.modInt(m); while (i < j) if (m % lowprimes[i + + ] = = 0 ) return false; } return x.millerRabin(t); } / / (protected) true if probably prime (HAC 4.24 , Miller - Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if (k < = 0 ) return false; var r = n1.shiftRight(k); t = (t + 1 )>> 1 ; if (t > lowprimes.length) t = lowprimes.length; var a = nbi(); for (var i = 0 ; i < t; + + i) { a.fromInt(lowprimes[i]); var y = a.modPow(r,this); if (y.compareTo(BigInteger.ONE) ! = 0 && y.compareTo(n1) ! = 0 ) { var j = 1 ; while (j + + < k && y.compareTo(n1) ! = 0 ) { y = y.modPowInt( 2 ,this); if (y.compareTo(BigInteger.ONE) = = 0 ) return false; } if (y.compareTo(n1) ! = 0 ) return false; } } return true; } / / protected BigInteger.prototype.chunkSize = bnpChunkSize; BigInteger.prototype.toRadix = bnpToRadix; BigInteger.prototype.fromRadix = bnpFromRadix; BigInteger.prototype.fromNumber = bnpFromNumber; BigInteger.prototype.bitwiseTo = bnpBitwiseTo; BigInteger.prototype.changeBit = bnpChangeBit; BigInteger.prototype.addTo = bnpAddTo; BigInteger.prototype.dMultiply = bnpDMultiply; BigInteger.prototype.dAddOffset = bnpDAddOffset; BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; BigInteger.prototype.modInt = bnpModInt; BigInteger.prototype.millerRabin = bnpMillerRabin; / / public BigInteger.prototype.clone = bnClone; BigInteger.prototype.intValue = bnIntValue; BigInteger.prototype.byteValue = bnByteValue; BigInteger.prototype.shortValue = bnShortValue; BigInteger.prototype.signum = bnSigNum; BigInteger.prototype.toByteArray = bnToByteArray; BigInteger.prototype.equals = bnEquals; BigInteger.prototype. min = bnMin; BigInteger.prototype. max = bnMax; BigInteger.prototype. and = bnAnd; BigInteger.prototype. or = bnOr; BigInteger.prototype.xor = bnXor; BigInteger.prototype.andNot = bnAndNot; BigInteger.prototype. not = bnNot; BigInteger.prototype.shiftLeft = bnShiftLeft; BigInteger.prototype.shiftRight = bnShiftRight; BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; BigInteger.prototype.bitCount = bnBitCount; BigInteger.prototype.testBit = bnTestBit; BigInteger.prototype.setBit = bnSetBit; BigInteger.prototype.clearBit = bnClearBit; BigInteger.prototype.flipBit = bnFlipBit; BigInteger.prototype.add = bnAdd; BigInteger.prototype.subtract = bnSubtract; BigInteger.prototype.multiply = bnMultiply; BigInteger.prototype.divide = bnDivide; BigInteger.prototype.remainder = bnRemainder; BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; BigInteger.prototype.modPow = bnModPow; BigInteger.prototype.modInverse = bnModInverse; BigInteger.prototype. pow = bnPow; BigInteger.prototype.gcd = bnGCD; BigInteger.prototype.isProbablePrime = bnIsProbablePrime; / / BigInteger interfaces not implemented in jsbn: / / BigInteger( int signum, byte[] magnitude) / / double doubleValue() / / float floatValue() / / int hashCode() / / long longValue() / / static BigInteger valueOf( long val) |
- 'navigator' 未定义,将
navigator = this
贴上去
调试加密算法
python执行
自写加密算法加密实例
登录发包
疑似点下断调试
查找加密算法
加密算法实现
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133function p(e, t) {
var n
=
(
65535
& e)
+
(
65535
& t);
return
(e >>
16
)
+
(t >>
16
)
+
(n >>
16
) <<
16
|
65535
& n
}
function a(e, t, n, o, i, r) {
return
p((s
=
p(p(t, e), p(o, r))) << (a
=
i) | s >>>
32
-
a, n);
var s, a
}
function l(e, t, n, o, i, r, s) {
return
a(t & n | ~t & o, e, t, i, r, s)
}
function m(e, t, n, o, i, r, s) {
return
a(t & o | n & ~o, e, t, i, r, s)
}
function f(e, t, n, o, i, r, s) {
return
a(t ^ n ^ o, e, t, i, r, s)
}
function g(e, t, n, o, i, r, s) {
return
a(n ^ (t | ~o), e, t, i, r, s)
}
function c(e, t) {
e[t >>
5
] |
=
128
<< t
%
32
,
e[
14
+
(t
+
64
>>>
9
<<
4
)]
=
t;
var n, o, i, r, s, a
=
1732584193
,
c
=
-
271733879
,
u
=
-
1732584194
,
d
=
271733878
;
for
(n
=
0
; n < e.length; n
+
=
16
) a
=
l(o
=
a, i
=
c, r
=
u, s
=
d, e[n],
7
,
-
680876936
),
d
=
l(d, a, c, u, e[n
+
1
],
12
,
-
389564586
),
u
=
l(u, d, a, c, e[n
+
2
],
17
,
606105819
),
c
=
l(c, u, d, a, e[n
+
3
],
22
,
-
1044525330
),
a
=
l(a, c, u, d, e[n
+
4
],
7
,
-
176418897
),
d
=
l(d, a, c, u, e[n
+
5
],
12
,
1200080426
),
u
=
l(u, d, a, c, e[n
+
6
],
17
,
-
1473231341
),
c
=
l(c, u, d, a, e[n
+
7
],
22
,
-
45705983
),
a
=
l(a, c, u, d, e[n
+
8
],
7
,
1770035416
),
d
=
l(d, a, c, u, e[n
+
9
],
12
,
-
1958414417
),
u
=
l(u, d, a, c, e[n
+
10
],
17
,
-
42063
),
c
=
l(c, u, d, a, e[n
+
11
],
22
,
-
1990404162
),
a
=
l(a, c, u, d, e[n
+
12
],
7
,
1804603682
),
d
=
l(d, a, c, u, e[n
+
13
],
12
,
-
40341101
),
u
=
l(u, d, a, c, e[n
+
14
],
17
,
-
1502002290
),
a
=
m(a, c
=
l(c, u, d, a, e[n
+
15
],
22
,
1236535329
), u, d, e[n
+
1
],
5
,
-
165796510
),
d
=
m(d, a, c, u, e[n
+
6
],
9
,
-
1069501632
),
u
=
m(u, d, a, c, e[n
+
11
],
14
,
643717713
),
c
=
m(c, u, d, a, e[n],
20
,
-
373897302
),
a
=
m(a, c, u, d, e[n
+
5
],
5
,
-
701558691
),
d
=
m(d, a, c, u, e[n
+
10
],
9
,
38016083
),
u
=
m(u, d, a, c, e[n
+
15
],
14
,
-
660478335
),
c
=
m(c, u, d, a, e[n
+
4
],
20
,
-
405537848
),
a
=
m(a, c, u, d, e[n
+
9
],
5
,
568446438
),
d
=
m(d, a, c, u, e[n
+
14
],
9
,
-
1019803690
),
u
=
m(u, d, a, c, e[n
+
3
],
14
,
-
187363961
),
c
=
m(c, u, d, a, e[n
+
8
],
20
,
1163531501
),
a
=
m(a, c, u, d, e[n
+
13
],
5
,
-
1444681467
),
d
=
m(d, a, c, u, e[n
+
2
],
9
,
-
51403784
),
u
=
m(u, d, a, c, e[n
+
7
],
14
,
1735328473
),
a
=
f(a, c
=
m(c, u, d, a, e[n
+
12
],
20
,
-
1926607734
), u, d, e[n
+
5
],
4
,
-
378558
),
d
=
f(d, a, c, u, e[n
+
8
],
11
,
-
2022574463
),
u
=
f(u, d, a, c, e[n
+
11
],
16
,
1839030562
),
c
=
f(c, u, d, a, e[n
+
14
],
23
,
-
35309556
),
a
=
f(a, c, u, d, e[n
+
1
],
4
,
-
1530992060
),
d
=
f(d, a, c, u, e[n
+
4
],
11
,
1272893353
),
u
=
f(u, d, a, c, e[n
+
7
],
16
,
-
155497632
),
c
=
f(c, u, d, a, e[n
+
10
],
23
,
-
1094730640
),
a
=
f(a, c, u, d, e[n
+
13
],
4
,
681279174
),
d
=
f(d, a, c, u, e[n],
11
,
-
358537222
),
u
=
f(u, d, a, c, e[n
+
3
],
16
,
-
722521979
),
c
=
f(c, u, d, a, e[n
+
6
],
23
,
76029189
),
a
=
f(a, c, u, d, e[n
+
9
],
4
,
-
640364487
),
d
=
f(d, a, c, u, e[n
+
12
],
11
,
-
421815835
),
u
=
f(u, d, a, c, e[n
+
15
],
16
,
530742520
),
a
=
g(a, c
=
f(c, u, d, a, e[n
+
2
],
23
,
-
995338651
), u, d, e[n],
6
,
-
198630844
),
d
=
g(d, a, c, u, e[n
+
7
],
10
,
1126891415
),
u
=
g(u, d, a, c, e[n
+
14
],
15
,
-
1416354905
),
c
=
g(c, u, d, a, e[n
+
5
],
21
,
-
57434055
),
a
=
g(a, c, u, d, e[n
+
12
],
6
,
1700485571
),
d
=
g(d, a, c, u, e[n
+
3
],
10
,
-
1894986606
),
u
=
g(u, d, a, c, e[n
+
10
],
15
,
-
1051523
),
c
=
g(c, u, d, a, e[n
+
1
],
21
,
-
2054922799
),
a
=
g(a, c, u, d, e[n
+
8
],
6
,
1873313359
),
d
=
g(d, a, c, u, e[n
+
15
],
10
,
-
30611744
),
u
=
g(u, d, a, c, e[n
+
6
],
15
,
-
1560198380
),
c
=
g(c, u, d, a, e[n
+
13
],
21
,
1309151649
),
a
=
g(a, c, u, d, e[n
+
4
],
6
,
-
145523070
),
d
=
g(d, a, c, u, e[n
+
11
],
10
,
-
1120210379
),
u
=
g(u, d, a, c, e[n
+
2
],
15
,
718787259
),
c
=
g(c, u, d, a, e[n
+
9
],
21
,
-
343485551
),
a
=
p(a, o),
c
=
p(c, i),
u
=
p(u, r),
d
=
p(d, s);
return
[a, c, u, d]
}
function u(e) {
var t, n
=
"";
for
(t
=
0
; t <
32
*
e.length; t
+
=
8
) n
+
=
String.fromCharCode(e[t >>
5
] >>> t
%
32
&
255
);
return
n
}
function d(e) {
var t, n
=
[];
for
(n[(e.length >>
2
)
-
1
]
=
void
0
, t
=
0
; t < n.length; t
+
=
1
) n[t]
=
0
;
for
(t
=
0
; t <
8
*
e.length; t
+
=
8
) n[t >>
5
] |
=
(
255
& e.charCodeAt(t
/
8
)) << t
%
32
;
return
n
}
function o(e) {
var t, n, o
=
"0123456789abcdef"
,
i
=
"";
for
(n
=
0
; n < e.length; n
+
=
1
) t
=
e.charCodeAt(n),
i
+
=
o.charAt(t >>>
4
&
15
)
+
o.charAt(
15
& t);
return
i
}
function i(e) {
return
unescape(encodeURIComponent(e))
}
function r(e) {
return
u(c(d(t
=
i(e)),
8
*
t.length));
var t
}
function s(e, t) {
return
function(e, t) {
var n, o, i
=
d(e),
r
=
[],
s
=
[];
for
(r[
15
]
=
s[
15
]
=
void
0
,
16
< i.length && (i
=
c(i,
8
*
e.length)), n
=
0
; n <
16
; n
+
=
1
) r[n]
=
909522486
^ i[n],
s[n]
=
1549556828
^ i[n];
return
o
=
c(r.concat(d(t)),
512
+
8
*
t.length),
u(c(s.concat(o),
640
))
} (i(e), i(t))
}
function getpwd(e, t, n) {
return
t ? n ? s(t, e) : o(s(t, e)) : n ? r(e) : o(r(e))
}
- 调试加密算法
- python执行
[注意]传递专业知识、拓宽行业人脉——看雪讲师团队等你加入!
赞赏
他的文章
看原图
赞赏
雪币:
留言: