-
-
[原创]CTF之自动化VM分析
-
发表于: 2021-9-29 21:41 12829
-
CTF之自动化VM
案例:2021长安杯-SimpleVM
一道当时比赛零解的题
题目文件以及脚本文件见附件
一:程序分析
拖入ida知道输入长度为8
输入flag{11223344}进行调试
发现将flag的内容11223344分开存放到两个四字节的变量中
然后将其移动到了内存中的某个位置(vm结构体中的寄存器)
下图是加载vm的bytecode
将flag的内容移动到vm结构体中
然后下面一个函数就是dispatcher,典型的用while循环读取的字节码进行分发执行不同的虚拟指令
再下方就是检测两个寄存器是否是0,为0才right
二:VM分析
分析VM,先找到它的bytecode,我们可以在内存中找到
然后找dispatcher
然后就是分析如何模拟的指令,以及根据这些模拟的指令来分析vm结构体
我恢复出来的vm结构体:
根据内存进行分析得到的
1 2 3 4 5 6 7 8 9 10 11 | struct vm { qword rip; qword * opcode; qword opcode_length; dword regs0; dword regs1; dword regs2; dword regs3; ..... } |
然后就是分析虚拟机的模拟指令
1.每次循环获取opcode
get_rip_value_ripad1函数:获取rip地址对应的字节码,然后将rip+1
2. mov regs[num1], regs[num2]
space首地址偏移24字节开始是存放的寄存器
所以这条指令解析为:
mov regs[操作数1], regs[操作数2]
3. add regs[num1], regs[num2]
同上,不过这里是+=
所以这条指令解析为:
add regs[操作数1],regs[操作数2]
4. shl regs[num1], regs[num2]
同上,解析为:
shl regs[操作数1], regs[操作数2]
5. shr regs[num1], regs[num2]
同上,解析为:
shr regs[num1], regs[num2]
6. regs[num1] %= regs[num2]
同上,解析为:
regs[num1] %= regs[num2]
7. xor regs[num1], regs[num2]
8. mov regs[num1], [regs[num2]+0x86]
将内存中的值赋值给寄存器
9. mov [regs[num1]+0x86], regs[num2]
10. cmp regs[num1], regs[num2]
比较两个寄存器并设置标志位
11. nop
其实这里是设计的一个简单的花指令,获取操作数之后
rip += 操作数
但是后来发现,基本上都是+1,显然是插了一个字节
直接nop
12. 跳转
三:编写反汇编器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | class Decompile: def __init__( self , file_name, opcode_keys_, code): self .filename = file_name # 要逆向的文件路径 self .asm_code = [] # 反汇编的指令列表 self .pc = 0 # 虚拟机的rip self .code = code # 存放文件的虚拟code self .opcode_keys = opcode_keys_ # 存放文件的指令集代表的opcode self .recompile_to_c = "" # 二维数组来存放每个文件反编译成c的代码 self .key_table = [] # 二维数组来存放文件的加密用的key_table self .enc_number = 0 # 根据key来判断加密的次数 self .a0 = 0 # 加密之后的数据(后面得到key_table之后会设置) self .a1 = 0 self .i = 0 # 解密的递归循环变量,用来判断是否退出递归 self .string = '' # 解密之后的字符串 def disamone( self ): # 反编译为伪汇编指令 regs = [ 'eax' , 'ebx' , 'ecx' , 'edx' , 'esi' , 'edi' , 'reg6' , 'reg7' , 'reg8' , 'reg9' , 'reg10' , 'reg11' , 'reg12' , 'reg12' , 'reg14' , 'reg15' , 'reg16' , 'reg17' , 'reg18' , 'reg19' , 'eax' , 'ebx' , 'reg22' , 'reg23' , 'reg24' , 'reg25' , 'reg26' , 'reg27' , 'reg28' , 'reg29' , 'ecx' , 'edx' , 'reg32' ] opcode = self .get_opcode() offset = len ( self .code) if opcode = = self .opcode_keys[ 11 ]: pc = self .pc num1,num2 = self .rip_ad_six() self .asm_code.append( "_%s: mov %s, %s" % ( hex (offset + pc), regs[num1], num2)) elif opcode = = self .opcode_keys[ 0 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 1 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: add %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 2 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: shl ecx, al" % ( hex (offset + pc))) # regs[num2] % (hex(offset + pc), regs[num1]) elif opcode = = self .opcode_keys[ 3 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: shr edx, bl" % ( hex (offset + pc))) # , regs[num2] % (hex(offset + pc), regs[num1]) elif opcode = = self .opcode_keys[ 4 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov eax, %s\ncdq\nidiv %s\nmov %s, edx" % ( hex (offset + pc), regs[num1], regs[num2], regs[num1])) elif opcode = = self .opcode_keys[ 7 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: xor %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 5 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov %s, [%s+0x86]" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 6 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov [%s+0x86], %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 8 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: cmp %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 9 ]: pc = self .pc num1 = self .rip_ad_five() self .asm_code.append( "_%s: nop" % ( hex (offset + pc))) elif opcode = = self .opcode_keys[ 10 ]: pc = self .pc num1, val = self .used_by_jcc() jcc = [ 'jmp' , 'jl' , 'jg' ] temp = '' if val = = 0 : temp = jcc[ 0 ] elif val = = 1 : temp = jcc[ 1 ] elif val = = 2 : temp = jcc[ 2 ] self .asm_code.append( "_%s: %s %s" % ( hex (offset + pc), temp, num1)) else : print ( "undefined instruction" ) def get_asm_code( self ): # 获取伪汇编代码 while self .pc < len ( self .code): self .disamone() print ( "\n" .join( self .asm_code)) |
得到伪汇编指令为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | _0x37f8: mov eax, 4 _0x37fe: mov ebx, 5 _0x3804: mov ecx, ebx _0x3807: mov edx, ebx _0x380a: shl ecx, al _0x380d: nop _0x3813: shr edx, bl _0x3816: mov esi, ecx _0x3819: nop _0x381f: xor esi, edx _0x3822: add esi, ebx _0x3825: mov edi, 64 _0x382b: xor esi, edi _0x382e: add eax, esi _0x3831: mov ecx, eax _0x3834: nop _0x383a: mov edx, eax _0x383d: nop _0x3843: shl ecx, al _0x3846: shr edx, bl _0x3849: nop _0x384f: mov esi, ecx _0x3852: xor esi, edx ......... |
四:优化汇编利用pwntools的asm直接将指令转换成机器码
缺点:对汇编的格式要求很高,必须要严格满足对应架构
有些指令在写反汇编器的时候很难实现,比如乘,除等
对于这道题,想了一下,并没有涉及到操作栈的指令,几乎全部是用寄存器来操作的
所以,直接重编译成C
五:重编译成C直接导入编译器编译
寄存器直接声明成变量即可
初始化工作:
用变量代替寄存器,用数组代替虚拟机内存,声明变量看作eflag
然后编写重编译器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | def disamtoc( self ): # 根据分析反编为C代码 regs = [ 'a0' , 'a1' , 'a2' , 'a3' , 'a4' , 'a5' , 'a6' , 'a7' , 'a8' , 'a9' , 'a10' , 'a11' , 'a12' , 'a13' , 'a14' , 'a15' , 'a16' , 'a17' , 'a18' , 'a19' , 'a20' , 'a21' , 'a22' , 'a23' , 'a24' , 'a25' , 'a26' , 'a27' , 'a28' , 'a29' , 'a30' , 'a31' , 'a32' ] opcode = self .get_opcode() if opcode = = self .opcode_keys[ 11 ]: pc = self .pc num1, num2 = self .rip_ad_six() # self.recompile_to_c += "_{}: {}={};\n".format(hex(pc), regs[num1], num2) self .recompile_to_c + = "{}={};\n" . format (regs[num1], num2) elif opcode = = self .opcode_keys[ 0 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}={};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 1 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}+{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}+={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 2 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}<<{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}<<={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 3 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}>>{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}>>={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 4 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {} % {};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{} %= {};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 7 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}^{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{} ^= {};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 5 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}=arr[{}+0x86];\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}=arr[{}+0x86];\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 6 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: arr[{}+0x86]={};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "arr[{}+0x86]={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 8 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .recompile_to_c + = "eflag={}-{};\n" . format (regs[num1], regs[num2]) # self.recompile_to_c += "_{}: eflag={}-{};\n".format(hex(pc), regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 9 ]: pc = self .pc num1 = self .rip_ad_five() # self.recompile_to_c += "_{}: goto _{}".format(hex(pc), hex(pc+1)) self .recompile_to_c + = "\n" elif opcode = = self .opcode_keys[ 10 ]: pc = self .pc num1, val = self .used_by_jcc() jcc = [ 'jmp' , 'jl' , 'jg' ] temp = '' if val = = 0 : temp = jcc[ 0 ] elif val = = 1 : temp = jcc[ 1 ] elif val = = 2 : temp = jcc[ 2 ] self .recompile_to_c + = "\n" # self.recompile_to_c += "_{}: val={};\nif(val == 0):goto _{};\nif(val==1 && eflag<0):goto _{}\nif(val==2 && eflag>0):goto _{}\n".format(hex(pc), val, hex(pc+num1), hex(pc+num1), hex(pc+num1)) else : print ( "undefined instruction" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | a20 = 0x00000004 ; a21 = 0x00000005 ; a2 = a1; a3 = a1; a2<< = a20; a3>> = a21; a4 = a2; a4^ = a3; a4 + = a1; a5 = 0x7b7cc140 ; a4^ = a5; a0 + = a4; a2 = a0; a3 = a0; a2<< = a20; a3>> = a21; a4 = a2; a4^ = a3; a4 + = a0; a5 = 0x2105b8c9 ; a4^ = a5; a1 + = a4; a20 = 0x00000004 ; a21 = 0x00000005 ; a2 = a1; a3 = a1; a2<< = a20; a3>> = a21; a4 = a2; a4^ = a3; a4 + = a1; a5 = 0xfea4fb66 ; a4^ = a5; a0 + = a4; a2 = a0; a3 = a0; a2<< = a20; a3>> = a21; a4 = a2; a4^ = a3; a4 + = a0; a5 = 0x7d1ae6c0 ; a4^ = a5; a1 + = a4; a20 = 0x00000004 ; a21 = 0x00000005 ; a2 = a1; a3 = a1; a2<< = a20; a3>> = a21; a4 = a2; a4^ = a3; a4 + = a1; a5 = 0x2775177e ; a4^ = a5; a0 + = a4; ...... |
然后复制到编译器中直接进行编译
得到程序的逻辑
编译后将exe拖入ida
可以得到程序的逻辑
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | int __cdecl main( int argc, const char * * argv, const char * * envp) { _main(argc, argv, envp); a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x7B7CC140 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x2105B8C9 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xFEA4FB66 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7D1AE6C0 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x2775177E ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x925FBD3 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD987DA09 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xFAD38F20 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xFD4AEBC6 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4C78602E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x9C43184A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xD65BC5BB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3EF2C893 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1B4F0892 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x9CC2356 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7F0EF800 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x6D84E09A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x59CE1C06 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x106AD753 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x879B9FFA ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x6A7D6C68 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x6A458E99 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x6A39546D ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xD3EDBF64 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x78DD036B ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xDDAE7767 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xAAA50E5C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x70AEAEB2 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3102AE18 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x3CECC69A ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA1583D2E ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xCEF3DC6D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3594C51 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xABDC6667 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x456C5FF2 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x6CB61C56 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3A7F577A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x57368E77 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x9F922D9B ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x12ECF301 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x25869D78 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5D870F1A ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xB88B07B2 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x8F8DBC4 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD255375 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7ACF76CF ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBB94A688 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1E6BF741 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD5623A3A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x44EBD4B4 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBBB704D2 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1A3FE1D8 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xE6D571EB ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xF798AB91 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xEE52C1DE ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x550DED4D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x4A7E0D53 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x6F4F1020 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x9DD3B13E ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4C29CAB4 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x16ADA2C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x581B7FEB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xAD7DBBDB ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x50F5A3BE ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBEE0CF2C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xA69D9701 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x333F88BB ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x6A4C98FE ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x56949F54 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xE699052A ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3B1CF719 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xE891D313 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xE0FB59 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xF4BA724D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3145BA6C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1717D7E1 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x3D612168 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4FE65709 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xEA376BDB ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB7039F36 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xAB8C9607 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xE932132E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x6DF54EC1 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xCAC96DBD ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA7FBC65A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7B230A96 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x823EA159 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x6D31027D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xE1D299A8 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xC8814791 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x78F200FC ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x8A561714 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x638F3CA3 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x3C6AFE1E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xFED9B68D ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x9CE3799E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD0B232C8 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4CD3EF18 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA644B0FF ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x2957FEAD ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x48A3CF3B ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5C61789F ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x5868362B ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x2135F32E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xDB14088C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xF2AA0A21 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x4FEB0573 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1B0AA45C ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x7A91AB42 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x78BCF4C8 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD3A6CC4E ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xEA44D817 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x767F67C3 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xC76E48E3 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x8CC053ED ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4C2315F4 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x281C994F ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x11077D71 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x18BBA510 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1B5530B5 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x93828D94 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5F95EEB0 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x2D913F0F ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB76F9152 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xC274D224 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xDA74FED7 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xF448F931 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xEA75D9C9 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x57FFA5B4 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4F3B4B3B ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x871B3FC8 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7725889 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x29C80A0C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x78E70B0C ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x1B57E9B7 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB81BC454 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xE93935C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xC28170AD ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x74A1E673 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x3A6EA904 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x98814E3C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xCF675AFE ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xF4FE401 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xCFD2CE19 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x97A0617 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x70D577BE ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x30458D1C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x59607271 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBD30141F ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x37DFBDD9 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x81C48D18 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xABB4F09E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xEBCB14EC ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x744CD637 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x42A10E5A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7D750737 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xE705255 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x884CB2AB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xCA8E63B7 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xBC827AC1 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xFC556F35 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x38137C4C ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x59D7E723 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB4AB0854 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x67A2E134 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xF0462B20 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xDFD77342 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5DCDAED0 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xC25DD48F ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x76ABE9EE ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x5F28D944 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB9AEC4AB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x7EC18FB1 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xAAF4E86D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x12FE6BAA ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB0EF7F44 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x1174ACFD ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x3780050C ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xB68AF075 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x83A7DC63 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xB56FF91C ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4958B5FD ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x5A51B2CE ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x359AC868 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x5A671B0E ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4D2E377D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x7DA8EDFC ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7C46A290 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBDF48D46 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xD8A6E9F7 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA7EB8AEF ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x47E4EDFB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x86EFCCF8 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x61ECDAE8 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x682795B1 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x365BB07E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x62731532 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1A04803D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD5A5E583 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xE9B10F05 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xDA683933 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1BB5181 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x240D3EA4 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x492AB8FB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x4CAFA828 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xCFB38FD9 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x364D6FA2 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xA4367616 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x1244F9C7 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB502CACA ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xCD123E96 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5CC4BB9A ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD3BFF3E3 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5D0069CB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x1D84208A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xBEA838D2 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xD7D9FC3 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x88339DAA ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x18435C21 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x8A51F2C8 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xC0BB0D11 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x3E9E2B5D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBD00703F ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB614A05C ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x9D376AA8 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x714906EB ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x622C818 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4EDD979E ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA01C1DDE ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x7B98B9AA ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x6E70EE28 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x5D982AF0 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x4D937C7A ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x17DE064C ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x8C843EFF ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x4F3A8634 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xB35FC006 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xE97C7ED9 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x997CB12B ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB0999D5D ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA6BC686 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xF2AB81F5 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xBE0D1038 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xC7B6F558 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x572933A1 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x553EEA26 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x564AAE33 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x50D5CFFA ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xA2CBAF92 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xF702C7A4 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xB2153A9F ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x9D5EC87 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0x570E2F95 ; a1 + = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0x1979F9E8 ; a20 = 4 ; a21 = 5 ; a0 + = (a1 + ((a1 >> 5 ) ^ ( 16 * a1))) ^ 0xC9F97045 ; a2 = 16 * a0; a3 = a0 >> 5 ; a5 = 0xB369A136 ; temp = (a0 + ((a0 >> 5 ) ^ ( 16 * a0))) ^ 0xB369A136 ; a1 + = temp; a30 = 4188039363 ; a31 = 3587894964 ; a0 ^ = 4188039363u ; a1 ^ = 3587894964u ; return 0 ; } |
六:实现自动化
首先我们分析程序的加密逻辑,知道是一个魔改的TEA
编写一个解密函数:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | def decrypt( self ): # 解密 self .a1 - = ( self .a0 + (( self .a0 >> 5 ) ^ ( 16 * self .a0))) ^ self .key_table[ self .i + 1 ] self .a1 & = 0xffffffff self .a0 - = ( self .a1 + (( self .a1 >> 5 ) ^ ( 16 * self .a1))) ^ self .key_table[ self .i] self .a0 & = 0xffffffff self .i - = 2 if self .i = = - 2 : a0_string = binascii.unhexlify( hex ( self .a0 & 0xffffffff )[ 2 :]).decode( "utf-8" ) a0_string = a0_string[:: - 1 ] a1_string = binascii.unhexlify( hex ( self .a1 & 0xffffffff )[ 2 :]).decode( "utf-8" ) a1_string = a1_string[:: - 1 ] self .string = a0_string + a1_string print ( self .string, end = '') return self .decrypt() |
分析下程序的规律
我们需要提取的,就是vm指令对应的opcode以及整个字节码
分析elf的内存,偏移是固定的
直接每次读取即可
最终脚本:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | # _*_ coding: utf-8 _*_ # editor: SYJ # function: Reversed By SYJ """ describe: """ from pwn import * import hashlib class Decompile: def __init__( self , file_name, opcode_keys_, code): self .filename = file_name # 要逆向的文件路径 self .asm_code = [] # 反汇编的指令列表 self .pc = 0 # 虚拟机的rip self .code = code # 存放文件的虚拟code self .opcode_keys = opcode_keys_ # 存放文件的指令集代表的opcode self .recompile_to_c = "" # 二维数组来存放每个文件反编译成c的代码 self .key_table = [] # 二维数组来存放文件的加密用的key_table self .enc_number = 0 # 根据key来判断加密的次数 self .a0 = 0 # 加密之后的数据(后面得到key_table之后会设置) self .a1 = 0 self .i = 0 # 解密的递归循环变量,用来判断是否退出递归 self .string = '' # 解密之后的字符串 def recompile( self ): # 定义一个方法来重编译(没必要,指令很简单,没有涉及栈操作) memory = bytes( self .code) data_bin = memory # 前面划分一段区域来当内存,直接将我们的opcode存放进去 asm_code = "\n" .join( self .asm_code) code_bin = asm(asm_code, arch = "i386" ) file = "{}_bin" . format (string[ len ( self .filename) - 10 : len ( self .filename) - 4 ]) open ( file , "wb" ).write(data_bin + code_bin) def get_opcode( self ): # 获取opcode opcode = self .code[ self .pc] return opcode def rip_ad_three( self ): # 获取rip跳转和操作数 fuck_num1 = self .code[ self .pc + 1 ] fuck_num2 = self .code[ self .pc + 2 ] self .pc + = 3 return fuck_num1, fuck_num2 def rip_ad_five( self ): fuck_num1 = self .code[ self .pc + 1 ] self .pc + = 6 return fuck_num1 def used_by_jcc( self ): # 根据虚拟机实现跳转指令的方式(分析出来获取比较值和跳转值) fuck_num1 = self .code[ self .pc + 1 ] self .pc + = 5 val = self .code[ self .pc] self .pc + = 1 return fuck_num1, val def rip_ad_six( self ): # 这个里面有点特殊,除开获取跳转和操作数之外,还要获取key以及key_len fuck_num1 = self .code[ self .pc + 1 ] fuck_num2 = bytes( self .code[ self .pc + 2 : self .pc + 6 ])[:: - 1 ] hex_val = '0x' # 该值用来返回 for x in fuck_num2: hex_val + = "{:02x}" . format (x) self .pc + = 6 if hex_val ! = '0x00000004' and hex_val ! = '0x00000005' : self .key_table.append( eval (hex_val)) # eval自动识别 return fuck_num1, hex_val def disamone( self ): # 反编译为伪汇编指令 regs = [ 'eax' , 'ebx' , 'ecx' , 'edx' , 'esi' , 'edi' , 'reg6' , 'reg7' , 'reg8' , 'reg9' , 'reg10' , 'reg11' , 'reg12' , 'reg12' , 'reg14' , 'reg15' , 'reg16' , 'reg17' , 'reg18' , 'reg19' , 'eax' , 'ebx' , 'reg22' , 'reg23' , 'reg24' , 'reg25' , 'reg26' , 'reg27' , 'reg28' , 'reg29' , 'ecx' , 'edx' , 'reg32' ] opcode = self .get_opcode() offset = len ( self .code) if opcode = = self .opcode_keys[ 11 ]: pc = self .pc num1,num2 = self .rip_ad_six() self .asm_code.append( "_%s: mov %s, %s" % ( hex (offset + pc), regs[num1], num2)) elif opcode = = self .opcode_keys[ 0 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 1 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: add %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 2 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: shl ecx, al" % ( hex (offset + pc))) # regs[num2] % (hex(offset + pc), regs[num1]) elif opcode = = self .opcode_keys[ 3 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: shr edx, bl" % ( hex (offset + pc))) # , regs[num2] % (hex(offset + pc), regs[num1]) elif opcode = = self .opcode_keys[ 4 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov eax, %s\ncdq\nidiv %s\nmov %s, edx" % ( hex (offset + pc), regs[num1], regs[num2], regs[num1])) elif opcode = = self .opcode_keys[ 7 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: xor %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 5 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov %s, [%s+0x86]" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 6 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: mov [%s+0x86], %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 8 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .asm_code.append( "_%s: cmp %s, %s" % ( hex (offset + pc), regs[num1], regs[num2])) elif opcode = = self .opcode_keys[ 9 ]: pc = self .pc num1 = self .rip_ad_five() self .asm_code.append( "_%s: nop" % ( hex (offset + pc))) elif opcode = = self .opcode_keys[ 10 ]: pc = self .pc num1, val = self .used_by_jcc() jcc = [ 'jmp' , 'jl' , 'jg' ] temp = '' if val = = 0 : temp = jcc[ 0 ] elif val = = 1 : temp = jcc[ 1 ] elif val = = 2 : temp = jcc[ 2 ] self .asm_code.append( "_%s: %s %s" % ( hex (offset + pc), temp, num1)) else : print ( "undefined instruction" ) def disamtoc( self ): # 根据分析反编为C代码 regs = [ 'a0' , 'a1' , 'a2' , 'a3' , 'a4' , 'a5' , 'a6' , 'a7' , 'a8' , 'a9' , 'a10' , 'a11' , 'a12' , 'a13' , 'a14' , 'a15' , 'a16' , 'a17' , 'a18' , 'a19' , 'a20' , 'a21' , 'a22' , 'a23' , 'a24' , 'a25' , 'a26' , 'a27' , 'a28' , 'a29' , 'a30' , 'a31' , 'a32' ] opcode = self .get_opcode() if opcode = = self .opcode_keys[ 11 ]: pc = self .pc num1, num2 = self .rip_ad_six() # self.recompile_to_c += "_{}: {}={};\n".format(hex(pc), regs[num1], num2) self .recompile_to_c + = "{}={};\n" . format (regs[num1], num2) elif opcode = = self .opcode_keys[ 0 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}={};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 1 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}+{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}+={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 2 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}<<{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}<<={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 3 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}>>{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}>>={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 4 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {} % {};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{} %= {};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 7 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}^{};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{} ^= {};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 5 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: {}=arr[{}+0x86];\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "{}=arr[{}+0x86];\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 6 ]: pc = self .pc num1, num2 = self .rip_ad_three() # self.recompile_to_c += "_{}: arr[{}+0x86]={};\n".format(hex(pc), regs[num1], regs[num2]) self .recompile_to_c + = "arr[{}+0x86]={};\n" . format (regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 8 ]: pc = self .pc num1, num2 = self .rip_ad_three() self .recompile_to_c + = "eflag={}-{};\n" . format (regs[num1], regs[num2]) # self.recompile_to_c += "_{}: eflag={}-{};\n".format(hex(pc), regs[num1], regs[num2]) elif opcode = = self .opcode_keys[ 9 ]: pc = self .pc num1 = self .rip_ad_five() # self.recompile_to_c += "_{}: goto _{}".format(hex(pc), hex(pc+1)) self .recompile_to_c + = "\n" elif opcode = = self .opcode_keys[ 10 ]: pc = self .pc num1, val = self .used_by_jcc() jcc = [ 'jmp' , 'jl' , 'jg' ] temp = '' if val = = 0 : temp = jcc[ 0 ] elif val = = 1 : temp = jcc[ 1 ] elif val = = 2 : temp = jcc[ 2 ] self .recompile_to_c + = "\n" # self.recompile_to_c += "_{}: val={};\nif(val == 0):goto _{};\nif(val==1 && eflag<0):goto _{}\nif(val==2 && eflag>0):goto _{}\n".format(hex(pc), val, hex(pc+num1), hex(pc+num1), hex(pc+num1)) else : print ( "undefined instruction" ) def get_asm_code( self ): # 获取伪汇编代码 while self .pc < len ( self .code): self .disamone() print ( "\n" .join( self .asm_code)) def get_c_code_and_encinfo( self ): # 获取重编的C代码和加密的一些信息 while self .pc < len ( self .code): self .disamtoc() self .a0 = self .key_table[ len ( self .key_table) - 2 ] self .a1 = self .key_table[ len ( self .key_table) - 1 ] self .enc_number = ( len ( self .key_table) - 2 ) self .i = len ( self .key_table) - 4 # print(self.i) # print(self.enc_number) # 打印key的数量 # print(self.recompile_to_c) # print c_code # print(self.key_table) # 打印key_table # print(self.a0) # print(self.a1) def decrypt( self ): # 解密 self .a1 - = ( self .a0 + (( self .a0 >> 5 ) ^ ( 16 * self .a0))) ^ self .key_table[ self .i + 1 ] self .a1 & = 0xffffffff self .a0 - = ( self .a1 + (( self .a1 >> 5 ) ^ ( 16 * self .a1))) ^ self .key_table[ self .i] self .a0 & = 0xffffffff self .i - = 2 if self .i = = - 2 : a0_string = binascii.unhexlify( hex ( self .a0 & 0xffffffff )[ 2 :]).decode( "utf-8" ) a0_string = a0_string[:: - 1 ] a1_string = binascii.unhexlify( hex ( self .a1 & 0xffffffff )[ 2 :]).decode( "utf-8" ) a1_string = a1_string[:: - 1 ] self .string = a0_string + a1_string print ( self .string, end = '') return self .decrypt() path = 'D:\\ReverseSource\\2021wmx-VMautomatic' # 所在的文件夹路径 file_number = 16 # 文件数量 for i in range (file_number): path + = '\\solve{}.exe' . format (i) # 文件绝对路径 data_bin = open (path, 'rb' ).read() # 文件的bin数据 opcode_length = data_bin[ 0xF390 : 0xF390 + 4 ] # 根据文件偏移为0x0000000000010390 - 0x1000获取opcode长度 opcode_length = opcode_length[:: - 1 ] opcode_length_hex = '0x' for x in range ( len (opcode_length)): opcode_length_hex + = "{:02x}" . format (opcode_length[x]) opcode_length_value = eval (opcode_length_hex) # print(hex(opcode_length_value)) opcode_keys = [] # 根据文件偏移都为0x4020-0x1000获取opcode_keys for j in range ( 12 ): opcode_keys.append(data_bin[ 0x3020 + j]) # print(opcode_keys) opcode = data_bin[ 0x3040 : 0x3040 + opcode_length_value] # 根据文件偏移为0x4040-0x1000得出虚拟机的code,读取长度为前面得到的opcode_length_value opcode_arr = [] for z in range (opcode_length_value): opcode_arr.append(opcode[z]) # print(opcode_arr) temp_object = Decompile(path, opcode_keys, opcode_arr) # temp_object.get_asm_code() temp_object.get_c_code_and_encinfo() temp_object.decrypt() path = "D:\\ReverseSource\\2021wmx-VMautomatic" print ( "\n" ) # 将控制台输出的字符串全部md5即可得到flag all_solve = "ozeletrtlhqtbthxqtkclucqtrkmrpguwewbzocqwnvhyxrxkdgfeqdefoucorbsbidzeijvcncopedpkfbezltqvebskounguxsvojwpgocejgmjdaxfscjflhjpqts" print ( 'flag{' + hashlib.md5(all_solve.encode( 'utf-8' )).hexdigest().lower() + '}' ) |
个人notion笔记地址:https://agate-colony-3f5.notion.site/CTF-VM-94d5b358d2b946b0a64f9910030f78af