首页
社区
课程
招聘
[推荐]近世代数第1讲
发表于: 2011-4-12 19:23 4143

[推荐]近世代数第1讲

2011-4-12 19:23
4143
当然不是我来讲,可谁有漂亮点的女老师的也贴上来

http://v.ku6.com/special/show_2409951/A7CPLYCPyefS-Qqj.html

cjsh88:

徐振环编的《群论导引》在线阅读。 ... 群论导引. / 徐振环编 / 1985年02月第1版
http://read.chaoxing.com/ebook/detail.jhtml?id=10654667

群类论
http://s.chaoxing.com/ebook/list_20105020.html

西师版-张广祥-数学与应用数学-近世代数第2讲
西师版-张广祥-数学与应用数学-近世代数第3讲
西师版-张广祥-数学与应用数学-近世代数第4讲
西师版-张广祥-数学与应用数学-近世代数第5讲
西师版-张广祥-数学与应用数学-近世代数第6讲
西师版-张广祥-数学与应用数学-近世代数第7讲
西师版-张广祥-数学与应用数学-近世代数第8讲

求S4/S3凯莱表:
z1:=IntegerRing(6) ;
z6:=AdditiveGroup(z1);
z6;
AutomorphismGroup(z6);
Subgroups(z6);
IsNilpotent(z6);
G := DihedralGroup(GrpPerm, 3);
G;
f := NumberingMap(G);
f;
[ [ f(x*y) : y in G ] : x in G ];

Abelian Group isomorphic to Z/6
Defined on 1 generator
Relations:
    6*z6.1 = 0
A group of automorphisms of Abelian Group isomorphic to Z/6
Defined on 1 generator
Relations:
    6*z6.1 = 0
Generators:
    Automorphism of Abelian Group isomorphic to Z/6
    Defined on 1 generator
    Relations:
        6*z6.1 = 0 which maps:
        3*z6.1 |--> 3*z6.1
        2*z6.1 |--> 4*z6.1
Conjugacy classes of subgroups
------------------------------

[1]     Order 6            Length 1
        Abelian Group isomorphic to Z/6
        Defined on 1 generator
        Relations:
            6*z6.1 = 0
[2]     Order 3            Length 1
        Abelian Group isomorphic to Z/3
        Defined on 1 generator in supergroup z6:
            $.1 = 2*z6.1
        Relations:
            3*$.1 = 0
[3]     Order 2            Length 1
        Abelian Group isomorphic to Z/2
        Defined on 1 generator in supergroup z6:
            $.1 = 3*z6.1
        Relations:
            2*$.1 = 0
[4]     Order 1            Length 1
        Abelian Group of order 1
true
Symmetric group G acting on a set of cardinality 3
Order = 6 = 2 * 3
Mapping from: GrpPerm: G to { 1 .. 6 }
[
    [ 1, 2, 3, 4, 5, 6 ],
    [ 2, 3, 1, 6, 4, 5 ],
    [ 3, 1, 2, 5, 6, 4 ],
    [ 4, 5, 6, 1, 2, 3 ],
    [ 5, 6, 4, 3, 1, 2 ],
    [ 6, 4, 5, 2, 3, 1 ]
]
Conjugacy classes of subgroups
------------------------------

[1]     Order 1            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 1
[2]     Order 3            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 3
            (1, 2, 3)
[3]     Order 6            Length 1
        Permutation group acting on a set of cardinality 3
        Order = 6 = 2 * 3
            (2, 3)
            (1, 2, 3)
[
    Symmetric group G acting on a set of cardinality 3
    Order = 6 = 2 * 3
        (1, 2, 3)
        (1, 2),
    Permutation group acting on a set of cardinality 3
    Order = 3
        (1, 2, 3),
    Permutation group acting on a set of cardinality 3
    Order = 1
]

万--本原表:

http://read.chaoxing.com/ebook/read_10831250.html

格论:
http://read.chaoxing.com/ebook/read_11177992.html

z1:=IntegerRing(40) ;
z6:=MultiplicativeGroup(z1);
z6;
# z6;
NumberOfGenerators(z6) ;
f := NumberingMap(z6);
f;
[ [ f(x*y) : y in z6 ] : x in z6 ];

A:=AutomorphismGroup(z6);
A;
Generators(z6);
11;
DerivedSeries(z6);
r1:=z6 !z6.1;
r1;
2*r1;
3*r1;
4*r1;
r11:=z6 !z6.2;
r11;
2*r11;
3*r11;
4*r11;
r111:=z6 !z6.3;
r111;
2*r111;
3*r111;
4*r111;

4444;
0;
r1;
r11;
r111;
2*r111;
3*r111;
r1+r11;
r1+r111;
r11+r111;
r1+2*r111;
r1+3*r111;
r11+2*r111;
r11+3*r111;
r1+r11+r111;
r1+r11+r111;
r1+r11+2*r111;
r1+r11+3*r111;

Abelian Group isomorphic to Z/2 + Z/2 + Z/4
Defined on 3 generators
Relations:
    2*z6.1 = 0
    2*z6.2 = 0
    4*z6.3 = 0
16
3
Mapping from: GrpAb: z6 to { 1 .. 16 }
[
    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ],
    [ 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15 ],
    [ 3, 4, 1, 2, 7, 8, 5, 6, 11, 12, 9, 10, 15, 16, 13, 14 ],
    [ 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13 ],
    [ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4 ],
    [ 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 2, 1, 4, 3 ],
    [ 7, 8, 5, 6, 11, 12, 9, 10, 15, 16, 13, 14, 3, 4, 1, 2 ],
    [ 8, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13, 4, 3, 2, 1 ],
    [ 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8 ],
    [ 10, 9, 12, 11, 14, 13, 16, 15, 2, 1, 4, 3, 6, 5, 8, 7 ],
    [ 11, 12, 9, 10, 15, 16, 13, 14, 3, 4, 1, 2, 7, 8, 5, 6 ],
    [ 12, 11, 10, 9, 16, 15, 14, 13, 4, 3, 2, 1, 8, 7, 6, 5 ],
    [ 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ],
    [ 14, 13, 16, 15, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11 ],
    [ 15, 16, 13, 14, 3, 4, 1, 2, 7, 8, 5, 6, 11, 12, 9, 10 ],
    [ 16, 15, 14, 13, 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9 ]
]
A group of automorphisms of Abelian Group isomorphic to Z/2 + Z/2 + Z/4
Defined on 3 generators
Relations:
    2*z6.1 = 0
    2*z6.2 = 0
    4*z6.3 = 0
Generators:
    Automorphism of Abelian Group isomorphic to Z/2 + Z/2 + Z/4
    Defined on 3 generators
    Relations:
        2*z6.1 = 0
        2*z6.2 = 0
        4*z6.3 = 0 which maps:
        z6.1 |--> z6.2
        z6.2 |--> z6.1
        z6.3 |--> z6.3
    Automorphism of Abelian Group isomorphic to Z/2 + Z/2 + Z/4
    Defined on 3 generators
    Relations:
        2*z6.1 = 0
        2*z6.2 = 0
        4*z6.3 = 0 which maps:
        z6.1 |--> z6.1 + z6.2
        z6.2 |--> z6.2
        z6.3 |--> z6.3
    Automorphism of Abelian Group isomorphic to Z/2 + Z/2 + Z/4
    Defined on 3 generators
    Relations:
        2*z6.1 = 0
        2*z6.2 = 0
        4*z6.3 = 0 which maps:
        z6.1 |--> z6.1
        z6.2 |--> z6.2
        z6.3 |--> 3*z6.3
    Automorphism of Abelian Group isomorphic to Z/2 + Z/2 + Z/4
    Defined on 3 generators
    Relations:
        2*z6.1 = 0
        2*z6.2 = 0
        4*z6.3 = 0 which maps:
        z6.1 |--> z6.1 + 2*z6.3
        z6.2 |--> z6.2
        z6.3 |--> z6.3
    Automorphism of Abelian Group isomorphic to Z/2 + Z/2 + Z/4
    Defined on 3 generators
    Relations:
        2*z6.1 = 0
        2*z6.2 = 0
        4*z6.3 = 0 which maps:
        z6.1 |--> z6.1
        z6.2 |--> z6.2
        z6.3 |--> z6.1 + z6.3
{
    z6.3,
    z6.2,
    z6.1
}
11
[
    Abelian Group isomorphic to Z/2 + Z/2 + Z/4
    Defined on 3 generators
    Relations:
        2*z6.1 = 0
        2*z6.2 = 0
        4*z6.3 = 0,

    Abelian Group of order 1
]
z6.1
0
z6.1
0
z6.2
0
z6.2
0
z6.3
2*z6.3
3*z6.3
0
4444
0
z6.1
z6.2
z6.3
2*z6.3
3*z6.3
z6.1 + z6.2
z6.1 + z6.3
z6.2 + z6.3
z6.1 + 2*z6.3
z6.1 + 3*z6.3
z6.2 + 2*z6.3
z6.2 + 3*z6.3
z6.1 + z6.2 + z6.3
z6.1 + z6.2 + z6.3
z6.1 + z6.2 + 2*z6.3
z6.1 + z6.2 + 3*z6.3

迷向群 isotropy group

    迷向群[地曲m可gr以甲;“,o,on:一印担na] 作用在集合M上的作为变换群的已给群G的保 持点x不动的元素组成的集合G:.这个集合实际 上是G的子群,并且称为点x的迷向群(isotr0Py gro叩).下列术语在同一个意义下使用:平稳子群(sta- tionary sub脚uP),稳定化子(stabili茂r),G中心化子 (G一“nt琦五次r).如果M是Ha璐do盯空间,G是连 续作用在M上的拓扑群,则G二是闭子群.更进一 步,如果M和G是局部紧的,G有可数基,并可迁 地作用在M上,那么存在从M到商空间G/H唯 一的同胚,其中H是迷向群之一;所有的G:,x〔M, 同构于H. 设M是光滑流形,G是光滑作用在M上的一 个Lie群,则点x‘M的迷向群G:诱导了切空间 Tx(M)的线性变换的群;后者称作x处的线性迷向 群(如伐汀isoti习pygro叩).在通过点x处的高阶的切 空间上,可以得到相应的高阶的切丛的构造群中的迷向 群的自然表示;它们称为高阶迷向群(瓦咖r刃川cr isot- ropy grouPs)(也见迷向表示(切txopy representation)).
    ......

http://www1.chkd.cnki.net/kns50/XSearch.aspx?KeyWord=%e8%bf%b7%e5%90%91%e7%be%a4

[招生]科锐逆向工程师培训(2024年11月15日实地,远程教学同时开班, 第51期)

上传的附件:
收藏
免费 0
支持
分享
最新回复 (0)
游客
登录 | 注册 方可回帖
返回
//