首页
社区
课程
招聘
[求助]MORDELL定理问题
发表于: 2011-1-13 17:47 6476

[求助]MORDELL定理问题

2011-1-13 17:47
6476
MORDELL定理问题
EQ=ETors×Zr

rank就是几个有理点解,ETors是WHAT?EQ=ETors×Zr怎麽成立的,说是直和,可怎麽直和的?

为了肯定Finitely generated abelian group 里的n1/n2和n1/p-1只能确定一种同构的ECC CURVE,得把MORDELL定理搞懂啊

y2 = x3 - x2 - 24649x + 1355209

Torsion points:

O, [67, 0],[-179, 0],[113, 0]

Independent points of infinite order:

P1 = [40, 657]
P2 = [21, 920]
P3 = [-55/16, 76797/64]
P4 = [3305/121, 1114848/1331]

--------------------------------------------------------------------------------

y2 = x3 - 856967076x

Torsion points:

O, [0, 0],[-29274, 0],[29274, 0]

Independent points of infinite order:

P1 = [-4998, 2039184]
P2 = [34476, 3381300]
P3 = [53958, 10528848]
P4 = [1843559424/25, 79156334875968/125]

[招生]科锐逆向工程师培训(2024年11月15日实地,远程教学同时开班, 第51期)

收藏
免费 0
支持
分享
最新回复 (9)
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
2
贴张Silverman书上的
上传的附件:
2011-1-24 20:20
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
3
Y^2=x^3-4x^2+16MOD17

17+2,19/29都4MOD5,图中的所有点64
2011-1-24 20:37
0
雪    币: 145
活跃值: (11)
能力值: ( LV2,RANK:10 )
在线值:
发帖
回帖
粉丝
4
看来楼主在安全方面学术还不错,发表了这么主题
2011-2-14 21:36
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
5
没人啊。。。刷墙涂鸦
2011-2-15 13:37
0
雪    币: 4560
活跃值: (1002)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
6
密码白痴飘过,友情帮顶
2011-2-15 16:15
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
7
多谢!

先贴点慢慢理解

Qx<x> := PolynomialRing(Rationals());
E1:=EllipticCurve( x^3-39);-

E1;
jInvariant(E1);
Genus(E1);

Q1, reps := IntegralPoints(E1);
Q1;
TorsionSubgroup(E1);-------------------------------------RANK=2,T=1
Mordell's curve   E: y^2 = x^3 - 39                       %%%
%%%                                                                       %%%
%%%    E_-00039: r = 2   t = 1   #III =  1                                %%%
%%%              E(Q) = <(4, 5)> x <(10, 31)>                             %%%
%%%              R =   2.7347941297                                       %%%
%%%               6 integral points                                       %%%
%%%                1. (4, 5) = 1 * (4, 5)                                 %%%
%%%                2. (4, -5) = -(4, 5)                                   %%%
%%%                3. (22, 103) = 1 * (4, 5) - 1 * (10, 31)               %%%
%%%                4. (22, -103) = -(22, 103)                             %%%
%%%                5. (10, 31) = 1 * (10, 31)                             %%%
%%%                6. (10, -31) = -(10, 31)   

Elliptic Curve defined by y^2 = x^3 - 39 over Rational Field
0
1
[ (4 : 5 : 1), (10 : 31 : 1), (22 : -103 : 1) ]
Abelian Group of order 1
==========================

E2:=EllipticCurve(x^3 +1331);---------------------------------RANK=1,T=2
E2;
jInvariant(E2);
Genus(E2);
TorsionSubgroup(E2);
Q2, reps := IntegralPoints(E2);
Q2;
E_+01331: r = 1   t = 2   #III =  1
          E(Q) = <(37, 228)> x <(-11, 0)>
          R =   3.2472475292
           3 integral points
            1. (-11, 0) = (-11, 0)
            2. (37, 228) = 1 * (37, 228)
            3. (37, -228) = -(37, 228)
Elliptic Curve defined by y^2 = x^3 + 1331 over Rational Field
0
1
Abelian Group isomorphic to Z/2
Defined on 1 generator
Relations:
    2*$.1 = 0
[ (-11 : 0 : 1), (37 : -228 : 1) ]
=========================

E3:=EllipticCurve(x^3 - 9998);------RANK=3,T=1 无整点
E3;
jInvariant(E3);
Genus(E3);
TorsionSubgroup(E3);
Q3, reps := IntegralPoints(E3);
Q3;

r = 3   t = 1   #III =  1
          E(Q) = <(-71/4, 531/8)> x <(19/9, 2701/27)> x <(283/9, 5473/27)>
          R = 114.5499715889
           0 integral points
Elliptic Curve defined by y^2 = x^3 - 9998 over Rational Field
0
1
Abelian Group of order 1
[]

==========================
E6:=EllipticCurve(x^3 +1521);----------RANK=1,T=3,有三对整点
E6;
jInvariant(E6);
Genus(E6);
TorsionSubgroup(E6);
Q6, reps := IntegralPoints(E6);
Q6;
E_+01521: r = 1   t = 3   #III =  1
          E(Q) = <(12, 57)> x <(0, 39)>
          R =   1.9164245639
           6 integral points
            1. (0, 39) = (0, 39)
            2. (0, -39) = -(0, 39)
            3. (12, 57) = 1 * (12, 57)
            4. (12, -57) = -(12, 57)
            5. (52, 377) = (0, 39) - 1 * (12, 57)
            6. (52, -377) = -(52, 377)
Elliptic Curve defined by y^2 = x^3 + 1521 over Rational Field
0
1
Abelian Group isomorphic to Z/3
Defined on 1 generator
Relations:
    3*$.1 = 0
[ (0 : 39 : 1), (12 : -57 : 1), (52 : 377 : 1) ]

E5:=EllipticCurve(x^3 -4*x^2+16);-----RANK=?,T=1,整点?
E5;
jInvariant(E5);
Genus(E5);
TorsionSubgroup(E5);
Q5, reps := IntegralPoints(E5);
Q5;

E7:=EllipticCurve(x^3 + 7388);
E7;
jInvariant(E7);
Genus(E7);
TorsionSubgroup(E7);
Q7, reps := IntegralPoints(E7);
Q7;

E8:=EllipticCurve(x^3 +7428);
E8;

jInvariant(E8);
Genus(E8);
TorsionSubgroup(E8);
Q8, reps := IntegralPoints(E8);
Q8;

E9:=EllipticCurve(x^3 - 7416);
E9;
jInvariant(E9);
Genus(E9);
TorsionSubgroup(E9);
Q9, reps := IntegralPoints(E9);
Q9;
上传的附件:
2011-2-15 20:16
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
8
Qx<x> := PolynomialRing(Rationals());
E1:=EllipticCurve( x^3-39);
E1;
MordellWeilRank(E1);
RankBounds(E1);
MordellWeilShaInformation(E1);
F:=FaltingsHeight(E1) ;
F;
HasComplexMultiplication(E1);
DescentInformation(E1);
Generators(E1) ;
Q1, reps := IntegralPoints(E1);
Q1;
TorsionSubgroup(E1);

Elliptic Curve defined by y^2 = x^3 - 39 over Rational Field
2
2 2
Torsion Subgroup is trivial
Analytic rank = 2
The 2-Selmer group has rank 2
Found a point of infinite order.
Found 2 independent points.
After 2-descent:
    2 <= Rank(E) <= 2
    Sha(E)[2] is trivial
(Searched up to height 100 on the 2-coverings.)
[ 2, 2 ]
[ (22 : -103 : 1), (4 : 5 : 1) ]
[
    <2, [ 0, 0 ]>
]
-0.204821688386087651093858399724
true -3
Torsion Subgroup is trivial
Analytic rank = 2
The 2-Selmer group has rank 2
Found a point of infinite order.
Found 2 independent points.
After 2-descent:
    2 <= Rank(E) <= 2
    Sha(E)[2] is trivial
(Searched up to height 100 on the 2-coverings.)
[ 2, 2 ]
[ (22 : -103 : 1), (4 : 5 : 1) ]
[
    <2, [ 0, 0 ]>
]
[ (4 : 5 : 1), (10 : 31 : 1) ]
[ (4 : 5 : 1), (10 : 31 : 1), (22 : -103 : 1) ]
Abelian Group of order 1
2011-2-15 20:37
0
雪    币: 2067
活跃值: (82)
能力值: ( LV9,RANK:180 )
在线值:
发帖
回帖
粉丝
9
火星
语言不通
路过
2011-2-15 20:47
0
雪    币: 433
活跃值: (45)
能力值: ( LV4,RANK:50 )
在线值:
发帖
回帖
粉丝
10
E00:=EllipticCurve( x^3-4*x^2+16);
E00;
MordellWeilShaInformation(E00);
DescentInformation(E00);
Generators(E00) ;
Q00, reps := IntegralPoints(E00);
Q00;
TorsionSubgroup(E00);

Elliptic Curve defined by y^2 = x^3 - 4*x^2 + 16 over Rational Field


mod17
0
0 0
Torsion Subgroup = Z/5
Analytic rank = 0
     ==> Rank(E) = 0
[ 0, 0 ]
[]
[]
Torsion Subgroup = Z/5
Analytic rank = 0
     ==> Rank(E) = 0
[ 0, 0 ]
[]
[]
[ (0 : 4 : 1) ]
[ (0 : 4 : 1), (4 : -4 : 1) ]
Abelian Group isomorphic to Z/5
Defined on 1 generator
Relations:
    5*$.1 = 0

====================
Qx<x> := PolynomialRing(Rationals());
E0:=EllipticCurve( x^3-2*x+16);
E0;
MordellWeilShaInformation(E0);

DescentInformation(E0);
Generators(E0) ;
Q0, reps := IntegralPoints(E0);
Q0;
TorsionSubgroup(E0);

Elliptic Curve defined by y^2 = x^3 - 2*x + 16 over Rational Field



mod17
1
1 1
Torsion Subgroup is trivial
Analytic rank = 1
     ==> Rank(E) = 1
The 2-Selmer group has rank 1
Found a point of infinite order.
After 2-descent:
    1 <= Rank(E) <= 1
    Sha(E)[2] is trivial
(Searched up to height 100 on the 2-coverings.)
[ 1, 1 ]
[ (0 : 4 : 1) ]
[
    <2, [ 0, 0 ]>
]
Torsion Subgroup is trivial
Analytic rank = 1
     ==> Rank(E) = 1
The 2-Selmer group has rank 1
Found a point of infinite order.
After 2-descent:
    1 <= Rank(E) <= 1
    Sha(E)[2] is trivial
(Searched up to height 100 on the 2-coverings.)
[ 1, 1 ]
[ (0 : 4 : 1) ]
[
    <2, [ 0, 0 ]>
]
[ (0 : 4 : 1) ]
[ (0 : 4 : 1) ]
Abelian Group of order 1

===========================================

Qx<x> := PolynomialRing(Rationals());
E0:=EllipticCurve( x^3-x+16);

mod17



mod21
E0;
MordellWeilShaInformation(E0);

DescentInformation(E0);
Generators(E0) ;
Q0, reps := IntegralPoints(E0);
Q0;
TorsionSubgroup(E0);

Elliptic Curve defined by y^2 = x^3 - x + 16 over Rational Field
2
2 2
Torsion Subgroup is trivial
Analytic rank = 2
The 2-Selmer group has rank 2
Found a point of infinite order.
Found 2 independent points.
After 2-descent:
    2 <= Rank(E) <= 2
    Sha(E)[2] is trivial
(Searched up to height 100 on the 2-coverings.)
[ 2, 2 ]
[ (0 : 4 : 1), (1 : -4 : 1) ]
[
    <2, [ 0, 0 ]>
]

Torsion Subgroup is trivial
Analytic rank = 2
The 2-Selmer group has rank 2
Found a point of infinite order.
Found 2 independent points.
After 2-descent:
    2 <= Rank(E) <= 2
    Sha(E)[2] is trivial
(Searched up to height 100 on the 2-coverings.)
[ 2, 2 ]
[ (0 : 4 : 1), (1 : -4 : 1) ]
[
    <2, [ 0, 0 ]>
]
[ (1 : 4 : 1), (-1 : 4 : 1) ]
[ (-1 : -4 : 1), (0 : 4 : 1), (1 : -4 : 1), (16 : -64 : 1), (63 : 500 : 1), (65
: -524 : 1), (262016 : 134119436 : 1) ]
Abelian Group of order 1
上传的附件:
2011-2-16 15:50
0
游客
登录 | 注册 方可回帖
返回
//